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1. Dataset
1.1. Statistics

As is mentioned in the paper, we use RealEstate10K
(RE10K) [13], MannequinChallenge (MC) [3] and WSVD
[11] for training and StereoBlur (SB) [12] for evaluation.
Since the numbers of videos in these datasets are extremely
unbalanced, for each epoch, we randomly choose a subset
from each dataset. The statistics of these dataset is shown
in Table 1.

Dataset
Depth

supervision
Video
count

Percentage for
one epoch

SB semi-dense 44 -
WSVD semi-dense 1008 100%
RE10K sparse 59380 2.5%
MC sparse 1910 100%

Table 1: Statistics of datasets we use in experiments. Per-
centage for one epoch means the percent of data we use for
one epoch during training. We use SB for evaluation only.
Video counts may be different from the numbers reported
officially because of the customized processing pipeline and
some videos becoming unavailable

1.2. Data processing pipeline

Static scene RE10K and MC contain monocular videos
exploring static scenes in the wild. They provide video links
and frame indices for training as well as the corresponding
camera poses, but no scene geometry is given. Thus we
reconstruct a sparse point cloud model for each video clip
using COLMAP [6, 7]. We initialize the camera extrinsic
and intrinsic matrices using the provided poses and other
parameters are set as default.

After reconstructing the sparse model, we filter out
videos with frame numbers less than 12 and 3D points num-
bers less than 1000. We also compute the total travel dis-
tance of the camera and remove those less than 1.2. Finally
we fit a global plane and compute the standard deviation
(STD) of the distance of all points to the plane. We remove

videos that has STD less than 0.6, since we find some videos
try to construct all geometries in a common plane.

Dynamic scene WSVD contains YouTube stereo video
links and frame indices for training. A closer look into the
dataset we find the official splitting contains a certain num-
ber of clips with low quality. For example, some clips have
negligible baselines so the left and right view are almost
identical, some clips are too blur to compute accurate cor-
respondence (due to motion blur or video compression) .
Therefore, we use a customized data processing pipeline to
filter out bad data and get temporal consistent semi-dense
disparity map from raw data.

We start from detecting each individual scene by warp-
ing error1 of two consecutive frames bigger than 0.25, or the
average color is smaller than 0.15 (black frame). We also
force the length of one clip to be between 0.5 and 10 sec-
onds. For each frame, we compute its disparity in left (right)
view by extracting the horizontal direction component of
the optical flow to the right (left). We mask out those pix-
els with vertical flow bigger than 1.5 pixels or bidirectional
flow consistency bigger than 1.5 pixels and yield a semi-
dense disparity map. We decide that one video clip is a good
clip only if: 1. The percentage of the pixels whose vertical
flow bigger than 1.5 pixels is smaller than 30%; 2. The per-
centage of the pixels who do not pass the bidirectional flow
consistency check is smaller than 40%; 3. The disparity of
pixels ranked 90% and 10% has difference larger than 10
pixels. After this, we manually filter out more bad clips with
duplicated content, wrong disparity or with severely flick-
ering artifacts. Finally, we apply the occlusion aware tem-
poral filtering to obtain temporal consistent disparity maps.

2. Implementation details
We now elaborate the implementation details and exper-

iment settings.

2.1. Scale invariant depth loss

We describe the details of scale invariant depth loss. We
first compute a scale factor by minimizing least square error

1We estimate all of the optical flows use RAFT algorithm [9]
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in log space as in [10]:

scale = exp

(
1

|D|
∑
i∈D

ln
di

d̂i

)
, (1)

where the di and d̂i is the ground truth and predicted dis-
parity and D is the set of all the indices of ground truth. For
semi-dense depth supervision, i is the pixel index and D is
the set of all the pixels that has valid disparity value. For
sparse depth supervision, i is the sparse point index and d̂i
is the bilinear sampling of D̂ at the 2D projection of the
corresponding sparse point.

Scale-invariance works in MC and RE10K, where the
camera is calibrated so the inverse depth differs the disparity
with only a scaling factor. However in WSVD, lots of stereo
videos have one view shifted, whereas the shift can not be
easily obtained [11]. Scale-and-shift-invariant loss [5] can
be used but we find fitting an extra shift parameter makes
training unstable and converge slow. So instead we use a
simpler but more effective solution by computing a pseudo
shift:

shift =

{
maxi∈D(di) + ε left view
mini∈D(di)− ε right view,

(2)

where ε = 4 is a constant for manually shifting back the cor-
responding view. Although this is not physically correct, we
find this scheme greatly speed up the training process while
the small error caused by manual shifting is negligible.

The final depth loss Ldepth is defined as:

Ldepth =
1

|D|
∑
i∈D

(
ln
di + shift

d̂i × scale

)2

. (3)

2.2. Training

We train the entire pipeline end-to-end jointly using all
the three aforementioned datasets. For each iteration we
pick one video and randomly choose 5 consecutive frames
with random skip between 1 and 5 frames. For static scene
dataset we randomly select one frame among the chosen
5 frames as the ground truth novel view. For stereo video
dataset we randomly pick one view as input and the other
as ground truth novel view.

We use distributed training in 10 RTX2080Tis with total
batch size 10. We use Adam Optimizer [1] for training and
set the initial learning rate as 2e-4. We train the pipeline for
120 epochs and decay the learning rate by a factor of 0.5
for every 30 epochs. Other hyper-parameters of the Adam
Optimizer are set as default.

3. Novel view synthesis metrics analysis
As is discussed in the paper, our method shows big im-

provements in perceptual similarity and flow magnitude, but

small gaps in terms of SSIM and PSNR. We claim that this
is because the SSIM and PSNR prefer blurry results to mis-
aligned results. We show one extreme case in Figure 1,
where our method demonstrates better LPIPS and FMean
but worse SSIM and PSNR. We also visualize the pixel-wise
L1 error with the ground truth. We can see that small mis-
alignment causes bigger pixel-wise error but still provide vi-
sual pleasant NVS result, while blurriness has smaller, more
distributed error, but greatly decrease the visual quality.

(a) Result of svMPI+svreg (b) Result of Ours

Figure 1: We show an extreme case that our method pro-
duces result with worse SSIM and PSNR, but better LPIPS
and FMean than svMPI+svreg. We shown the NVS results
in the first row and a visualization of the error map in the
second row. We can see that LPIPS and FMean are more
consistent with human perception.

4. More qualitative results

We show more view synthesis results in Figure 3, as well
as the predicted disparity map in Figure 2. Besides, we also
show several NVS results from DAVIS [4] dataset, which
demonstrates the generality of our method. Please refer to
the attached video for more intuitive results.

5. Details of Training LBTC modules

Learned Blind Video Temporal Consistency (LBTC) [2]
use a ConvLSTM [8] structure to post process a sequence of
frames P = {P0,P1, ...}, which are preprocessed by some
single frame algorithm from raw input I = {I0, I1, ...} in a
frame-by-frame manner. It is capable of generating tempo-
ral consistent sequence O = {O0,O1, ...} without accurate
dense correspondence. We follow the same idea but make
some adjustments since the original implementation focuses
on texture to texture transformation while in our scenario O
lies in a totally different domain.

2
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(a) ground truth (b) svMPI (c) svMPI+svreg (d) svMPI+filter (e) svMPI+lbtc (f) Ours

(g) ground truth (h) svMPI (i) svMPI+svreg (j) svMPI+filter (k) svMPI+lbtc (l) Ours

Figure 2: The visualization of predicted disparity maps and temporal consistency of baselines and our method. In the second
and fourth rows, the vertical axis indicates timestamps while the horizontal axis indicates the spatial location.

We first increase the channel of each conv since P is a
multi-plane alpha with relatively large channel number. We
then redesign the losses for multi-plane alpha:

5.1. Content similarity Loss

[2] use perceptual (VGG) loss to constraint the Ot to
be similar to Pt. This can no longer be used since Pt is
not an ordinary image. Therefore, we encourage the Ot to
be consistent with Pt by L1 norm as well as a multi-level
gradient loss:

Lp =

T∑
t=1

‖Pt −Ot‖1 + λg

3∑
l=0

‖G(D(l)
t − D̂

(l)
t )‖1, (4)

where Dt and D̂t are the disparity maps computed from
Pt and Ot [10], respectively, the superscript l means l-th
level in the image pyramid, and T is the total number of
frames we use in one training iteration. We follow the same
notation as in the paper, where ‖ · ‖1 is the L1 norm over
all pixel positions and channels, and G(·) is the per-pixel L1
norm of the gradient field. We empirically set λg = 1.

5.2. Short term temporal loss

We use the same occlusion-aware warping error as in [2]
to constraint the short term temporal consistency:

Lst =

T∑
t=2

‖Mt→t−1 ∗ |D̂t −W(Ft→t−1, D̂t−1)|1‖1 (5)

where | · | is the pixel-wise L1 norm, W is the back-
ward warping function, and Mt→t−1 = exp(−α|It −

W(Ft→t−1, It−1)|1) is the visibility mask. We set α to 50
as in [2].

5.3. Long term temporal loss

The long term temporal consistent loss is also the same
as the original implementation:

Llt =

T∑
t=2

‖Mt→1|D̂t −W(Ft→1, D̂1)|1‖1 (6)

The final loss is a weighted sum of all the terms:

L = λpLp + λstLst + λltLlt. (7)

In the experiment we set λp = 10, λst = λlt = 100. Other
settings are the same as [2].

6. Practical Aspect
Our compact representation R can achieve real-time

novel view synthesis. All parameters in R are bounded be-
tween (0, 1) by setting the last activation as Sigmoid. We
can then quantify parameter maps {Dfg,Tfg,Dbg,Tbg}
to UINT8 and stack all the maps together with the fore-
ground and background image I and B. The stacked im-
age sequence can then be encoded and compressed using
existing video compression algorithms like H.264. During
rendering we implement a customized shader to render the
layered MPI in OpenGL and achieve the rendering speed of
over 1K fps at 800×448 resolution in a commercial laptop.

Since we explicitly estimate a temporal consistent geom-
etry, other interesting applications can be easily achieved

3
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(a) input It (b) disocclusion mask (c) neighbor It+2 (d) svLDI

(e) svMPI (f) svMPI+svreg (g) svMPI+filter (h) svMPI+lbtc (i) Ours

(j) input It (k) disocclusion mask (l) neighbor It−2 (m) svLDI

(n) svMPI (o) svMPI+svreg (p) svMPI+filter (q) svMPI+lbtc (r) Ours

Figure 3: NVS results and MPI visualization of baselines and ours. The visualization is the same as the paper. Note how
svMPI based methods produce blurry results and svLDI generates the inconsistent textures with neighbor frames.

like dolly zoom effect and refocus. Please refer to the at-
tached video for visualization.
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Figure 4: We show NVS results of videos in the wild (from DAVIS [4] dataset). In the first row we visualize the occlusion
mask alongside the input frames.
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