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Abstract

The multiplane images (MPI) has shown great promise
as a representation for efficient novel view synthesis. In
this work, we present a new MPI-based approach for real-
time novel view synthesis of monocular videos. We first for-
mulate a new representation, referred to as layered MPI
(LMPI), to reduce the number of parameters in MPI and
make it suitable for videos. Then we propose a pipeline
that generates sequence of temporally consistent LMPI us-
ing a single monocular video as input. The pipeline exploits
the information from multiple frames, does not require any
camera pose information, and can generate compelling lay-
ered multiplane video results. Experiments validate that our
framework achieves better visual quality than several base-
lines and is capable of interactive novel view synthesis dur-
ing video playback.

1. Introduction
Novel View Syntesis (NVS) addresses the problem of

generating novel views of a scene from a given image(s)
or video(s). It provides a compelling way of interacting
with images or video recordings and thus has lots of excit-
ing applications in content creation and rendering. Existing
works have shown remarkable performance in generating
novel views using images from multiple or even single im-
age. However, there are few attempts to generate new views
from monocular videos of dynamic scenes.

Existing NVS methods [46, 20] on monocular videos
focus on videos that are carefully captured so that: 1. the
camera has enough translation, and 2. the dynamic objects
do not dominate the field of view. More specifically, their
methods rely on structure from motion (SfM) to obtain ge-
ometry of the static part of the scene as a prior before in-
ferring the dynamic structure. Therefore, they are not ro-
bust to examples where SfM cannot capture the shape accu-
rately. Moreover, they are unable to generate new views in
real-time, making it more restricted for some practical use
scenarios.

To circumvent this limitation posed by the SfM results,

we propose a different approach that extends the single im-
age method to videos. Particularly, we focus on the MPI
representation for its rendering efficiency. However, there
are several challenges when trying to apply the single im-
age methods to videos:

Fully Exploit Cross-frame Information: Single frame
methods achieve plausible results by exploiting the spatial
information inside one frame while the temporal informa-
tion is ignored. How to aggregate cross-frame information
remains an open problem, especially when the SfM fails.

Temporal Consistency: Single frame methods usually
suffer from flickering artifacts if applied in a frame-by-
frame manner. This can potentially be solved using post-
processing methods [4, 16, 18]. In the task of NVS, how-
ever, both geometry and texture consistency need to be pre-
served and the heterogeneous representation makes it chal-
lenging to directly apply existing post-processing methods.

Rendering Efficiency: Several methods have achieved in-
teractive NVS for single image [41, 14]. But to the best of
our knowledge, there are no attempts for monocular videos.

In this work we attempt to tackle these challenges. We
first introduce a novel representation, layered multiplane
image, or LMPI for short, that can be rendered in real-time
as an MPI but is more compact in terms of parameter size.
We then propose a pipeline that utilizes the cross-frame in-
formation and generates temporally consistent LMPIs. We
consider two properties of videos that can always be ex-
ploited: motion boundaries for predicting geometry, and
disocclusions for background textures. Moreover, disoc-
clusions are also key to producing temporal consistency in
novel views, since the same background will potentially be
seen in different timestamps.

The proposed pipeline formulates the motion boundary
guidance as the motion field guiding the upsampling pro-
cess of the LMPI. Disocclusions are aggregated as context
for generating the background image in the representation.
To summarize, our main contributions include:

• To our knowledge, the first framework that achieves
real-time NVS of monocular videos without any cam-
era pose information.
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• A new representation that is more compact than MPI
and achieves better visual quality.

• A new method to exploit motion boundaries for gener-
ating temporally consistent geometry.

• A new algorithm to aggregate background context
from multiple frames.

2. Related work
Novel View Synthesis Interpolating or extrapolating

views given multiple input views is a well-studied problem
[6, 29, 11, 7, 49]. On the contrary, NVS on a single image
is a highly ill-posed problem, since both structure and oc-
cluded texture need to be recovered from a single image.
Several methods have been proposed to synthesize novel
views from a single image [28, 35, 14, 41, 44]. These meth-
ods are difficult to generalize to videos due to the aforemen-
tioned challenges.

Most NVS methods usually first generate an intermedi-
ate representation like layered depth [34, 50] and neural
radiance field [27, 25, 36, 3]. In particular, we focus on
works that use multiplane image (MPI) as proxy. MPI has
achieved great success in generating photo-realistic images
[49, 10, 37, 26, 41] because of its ability on modeling non-
Lambertian shading and soft edges. Moreover, the render-
ing process is efficient and differentiable, so the pipeline
can be trained end-to-end. Some variants have been ex-
plored such as multi sphere image (MSI) [1], layered mesh
[5], deep MPI [21] and NeX [45]. Most existing methods
generate MPIs from multiple views. We instead focus on a
single monocular video input.

Novel view synthesis for dynamic scenes Many works
have explored the possibility of generating novel views in
dynamic scenes. However most approaches require multi-
view input in each timestamp [50, 23, 2, 38, 5, 1].

Recent works have taken a step forward for NVS for dy-
namic scene using monocular video. [46] manually mask
out dynamic objects and use SfM to obtain an incomplete
structure. This structure is then used for correcting the
depth predicted from a single image. [20, 40] try to fit the
dynamic scene using a neural radiance field by training a
fully connected neural network during test time. However,
these methods require camera poses and fail to produce any
results when SfM does not work well, e.g. a scene with
homogeneous textures, where the camera-motion is negli-
gible, or when dynamic objects occupy too much image
space. To best of our knowledge, there are no methods that
focus on NVS in dynamic scenes without poses as addi-
tional input.

Structure from monocular video We also review meth-
ods that only predict depth from videos in a dynamic scene.
[31] use motion segmentation and occluder-occludee rela-
tionships to infer relative depth. [19] compute an incom-

plete depth map using Plane-Plus-Parallax representation
and use it as a prior to generate a complete one. [22] use
probability volumes among different frames to refine the
depth from a single view. Recent attempts achieve globally
consistent results by applying test-time learning [24, 15].
These methods again need camera poses and thus are not
applicable in our task.

3. Approach

3.1. System Overview

Given an input image sequence V = {It|t = 0, 1, ...},
our pipeline operates on a local time window {Ik ∈ N (t)}
and predicts a LMPI Rt for each frame. Rt consists of three
components {Pt, It,Bt}, where Pt is the geometry rep-
resentation, namely parameter map, that defines a density
function over the depth for each pixel; and Bt is the pre-
dicted background image. While rendering the novel view,
we first convert Rt to MPI representation and then follow
the standard MPI rendering pipeline [49].

Our pipeline can be partitioned into two modules. The
first module estimates the parameter map Pt and the other
predicts the background image Bt. We elaborate our new
representation Rt in Section 3.2 and the above two mod-
ules in Section 3.3 and 3.4. Then we describe the data for
training in Section 3.5 and finally the losses in Section 3.6.

3.2. Layered Representation of Multiplane Image

The MPI represents the scene geometry using D fronto-
parallel alpha planes in the frustum of a reference camera
[49] with each plane arranged at fixed depths. Typically D
varies from dozens to hundreds, which can easily become a
bottleneck when processing videos. Another prevalent rep-
resentation for NVS is layered depth image (LDI), which
models the geometry as only two or more layers of depth
map. However, the LDI cannot model soft edges and is inef-
ficient to render for videos. We take the advantages of both
representations by parameterizing theD alpha planes to lay-
ers and converting back to MPI during rendering. Thus we
call our representation layered MPI.

As illustrated in Figure 2, for each pixel, the LDI mod-
els the density over disparity x (inverse depth) as several
pulse functions, while MPI fits the geometry by a discrete
density function. In contrast, our parameter map Pt defines
a continuous density function using two sets of parameters
{dfg, tfg}1 and {dbg, tbg} that represent the foreground and
background layers, respectively. Formally:

σ(x) = σ0
∑

n={fg,bg}

1(dn − tn < x < dn), (1)

1For ease of notation, we omit the subscript for pixel index and time
index and use a lower case letter per pixel parameter.
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Figure 1: The proposed framework. For each frame It we operate on a local time window N (t) and generate LMPI Rt for
rendering. The pipeline consists of two modules that generate parameter map Pt and background image Bt respectively.
Parameter map estimation module (green) first predicts a coarse parameter map Pt ↓ and an upsampling weight Wt. Pt ↓
is then upsampled to get final Pt. Background estimation module (red) first use Algorithm 1 to aggregate context image Ictx
and context mask Mctx from neighbor frames, then use U-Net to generate the final background image Bt

Figure 2: An illustration of defined density function σ(x) in
LDI, LMPI and MPI representation.

where 1(·) is an indicator function and σ0 is a constant. By
defining σ(x), we assume that each layer is positioned at
disparity dn and has thickness tn. We also assume each
layer has constant density σ0. In early experiments we
found that optimizing over σ0 leads to a half-transparent
object even for solid materials, causing blur artifacts. We
can additionally predict more than two layers, but we find
that not necessary in practice since two layers are already
expressive enough to fit in most structures that are inferred
from single views.

During rendering, we first convert P to multi-plane alpha
αi following classical volume rendering [12]:

αi = 1− exp

(
−
∫ xi+1

xi

σ(x)dx

)
, (2)

where i indicates the plane index and xi the disparity of i-th
plane. The color of each plane ci is a linear combination of

I and B:
ci = wicfg + (1− wi)cbg, (3)

where cfg and cbg are the RGB values from I and B, re-
spectively, and the blending weight wi is determined by:

wi =

{
1 xi > (dfg + dbg)/2

1− αfg otherwise, and
(4)

αfg = 1− exp (−σ0tfg) , (5)

where αfg is the transparency of the foreground layer. The
blending weight is inspired by the observation that invisible
regions should use the background image [41]. We also
synthesize a pseudo disparity map for depth supervision by:

d̂ = αfgdfg + (1− αfg)dbg. (6)

After converting to the MPI representation, new views
can be synthesized using the standard MPI rendering
pipeline.

3.3. Flow Guided Parameter Map Estimation

We propose to predict the geometry representation P
with the pipeline shown in the green box in Figure 1. As
is discussed in the introduction, motion boundaries provide
guidance for predicting depth and we formulate the guid-
ance as the flow field guiding the up-sampling process of a
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coarse parameter map. The pipeline predicts a coarse pa-
rameter map P↓ and an up-sampling weight W at 1/8 res-
olution by fusing the image feature and the flow feature pre-
dicted by RAFT [39]. W is supervised by the up-sampling
weight Wraft that is used for upsampling the flow field, so
the edges of the parameter map are encouraged to align with
the flow edges.

One potential problem of fusing the flow features is that
for static scenes, where the flow features implicitly encode
epipolar geometry, the network may learn to infer structure
from the flow even if we do not input any camera pose. This
should not happen for a dynamic scene since the epipolar
constraint no longer holds. So we remove the flow feature to
break the flow-depth relationship when we are training the
dataset with static scenes. In the inference stage, we apply
occlusion-aware temporal filtering at coarse parameter map:

P′t↓ =
∑

k∈N (t)

Ōt→k↓ ∗W(Ft→k↓,Pk↓), (7)

where Ft→k↓ is the optical flow from frame t to k at 1/8
resolution predicted also by RAFT, W(F,C) is the back-
ward warping function that bilinearly samples the content
C with flow F, and Ōt→k↓ is a normalized soft occlusion
mask:

Ōt→k↓ = gkOt→k↓/
∑

i∈N (t)

giOt→i↓, (8)

where ·/· is the pixel-wise division, gi is the Gaussian ker-
nel and Ot→k↓ is a soft occlusion mask:

Ot→k↓ = exp (−α0|Ft→k↓ +W(Ft→k↓,Fk→t↓)|1) .
(9)

| · |1 is the pixel-wise L1 norm and α0 is a constant which
we set to 0.2. The fine parameter map P is then generated
by up-sampling P′t↓ using W. The up-sampling follows the
same process as [39].

3.4. Background Image estimation

Next, we describe the pipeline to generate the back-
ground image (refer to orange box in Figure 1). We first
aggregate context information from neighboring frames.
Specifically, for each frame It and its temporal neighbor Ik,
we try to grab all the disoccluded pixels from Ik and align
in It. This is challenging because the disoccluded pixels in
It are covered by foreground and optical flow is valid only
in the visible region. One solution is to forward warp (splat)
the disoccluded pixels using Fk→t, but splatting generally
suffers from holes and blurriness. Therefore, we propose an
algorithm to generate the background flow Fbg so that all
contexts can be aligned using backward warp. As illustrated
in Algorithm 1, we generate an initial background flow by
splatting the−Fk→t using Fk→t itself. The splatted flow is

Algorithm 1: Generate context image and mask of
Ik with respect to time t

Input: frame k: Ik, bidirectional flow between
frame t and k: Ft→k, Fk→t

Result: Ictxk
, Mctxk

Note that One is a map filled with 1.
Occk ← 1− S(Ft→k, One, One);
F0

bg ← S(Fk→t, −Fk→t, Occk);
for i← 0 to 2 do

Fi+1
bg ←W(Fi

bg , Fk→t);
end
Mctxk

← S(Fk→t, Occk, Occk);
Ictxk

←W(F3
bg , Ik);

def S(F, C, W):
C′ ← 0;
forward splat content C and weight W using

flow F to 4 nearest neighbors onto C′. For
each position in C′ we cache list of splatted
content C = {ci|i ∈ [1, k]} and weight
W = {wi|i ∈ [1, k]}, as well as the bilinear
splatting weight M = {mi|i ∈ [1, k]};

for each pixel c′ in C’ do
c′ =

∑k
i=1

ciwimi

wimi

end
return C′

end

weighted by occlusion mask in Ik so the background flow
will not be fused by the foreground flow. To eliminate small
errors we iteratively search the Fbg to meet the bidirectional
consistency with Fk→t.

For each frame t, Algorithm 1 is applied to several neigh-
bors to obtain a collection of context images and masks
{Ictxk,Mctxk|k ∈ N (t)}. We aggregate them to a uni-
fied context image by iteratively overwriting the pixels in
It with Ictxk in the pixel positions where Mctxk is larger
than a threshold ε = 0.5. The order is not of concern be-
cause usually the context masks have few overlaps. Mctx is
obtained in a similar manner. The context image and mask
are concatenated together with the current image I and pa-
rameter map P to predict the final background image B.
The network learns to inpaint the remaining occluded re-
gion where there is no context from neighbor frames.

3.5. Data

Acquiring proper data for training this pipeline is chal-
lenging, requiring videos with ground truth geometry as
well as ground truth novel views for every timestamp. Next,
we describe the two types of sources that we used.

Cameras exploring static scene: Since the scene is static,
every timestamp is a ground truth novel view for the current
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frame. Considering the diversity of data, we use a combina-
tion of RealEstate10K (RE10K) [49] and MannequinChal-
lenge (MC) [19] for training. We reconstruct a sparse point
cloud model for each scene using COLMAP [32, 33] and
apply a customized pipeline to filter out bad data.

Stereo Cameras exploring dynamic scene: One source
that perfectly suits our need is stereo video, since it pro-
vides semi-dense disparity maps as well as ground-truth
novel views. We use WSVD [43] for training and Stere-
oBlur (SB) [48] for evaluation. We also re-process the raw
data of WSVD using a customized pipeline since they only
provide video links. More detailed descriptions of the data
processing pipeline and dataset statistics can be found in the
supplementary material.

3.6. Losses

Scale invariant depth supervision: Structures recon-
structed from a single view usually suffer from scale am-
biguity, and the common practice is to correct the scale
[8, 42, 41] before comparing with ground truth. We fol-
low the same equation of Ldepth as in [41] to supervise the
pseudo disparity map we predict in Equation 6.

Reconstruction loss: Given the LMPI representation,
we reconstruct the novel view using the method described
in Section 3.1. We then penalize the reconstruction error
by per-pixel L1 loss between ground truth novel view and
rendered novel view:

Lreconstruction = ‖Îrendered − Igroundtruth‖1, (10)

We denote the ‖ · ‖1 as the L1 norm over all pixel positions
and channels.

Parameter prior: Training two-layer structure from a
single view is not trivial since there is almost no supervi-
sion for the background layers. We find it necessary to con-
straint the behavior of the background layer using a prior
loss. One observation is that when there is a sharp edge
in the disparity map, the background layer should remain
smooth and be properly occluded by the foreground. Thus
we formulate the prior loss as:

Lprior = |E(D̂↓)− D̂bg↓|1 ∗Min + |D̂↓− D̂bg↓|1 ∗Mout,
(11)

where Min and Mout are two masks that softly indicates
the two sides of a disparity edge:

Min = |E(D̂↓)− D̂↓|1,

Mout = |D(D̂↓)− D̂↓|1,
(12)

where E and D is the morphological erosion and dilation.
Note that we apply the prior loss only in at the coarse reso-
lution.

Hybrid smoothness: Unlike most methods that apply
edge-aware smoothness on the disparity map, we argue that

two layers should have different priors. The foreground
should align its edges to input image while the background
layer should remain smooth. We first compute an edge mask
E:

E = max

(
1− G(I)

emin max(G(I))
, 0

)
, (13)

where G(I) is the per-pixel L1 norm of the gradient of
I. The smooth loss is then a combination of edge-aware
smoothness of foreground disparity D̂fg and first order
smoothness of background disparity D̂bg:

Lsmooth = ‖G(D̂fg) ∗E + λgG(D̂bg)‖1. (14)

We empirically set λg = 0.2.
Upsampling supervision: As is mentioned in Section

3.3, we supervise the upsampling weight W by:

Lupsampling = min(G(F↓), 1)‖W −Wraft‖1, (15)

where F↓ is the coarse flow that has the same resolution
as P↓. We use the soft mask min(G(F↓), 1) to decay the
weight where the flow has a small gradient since there is no
motion boundary in those regions.

Background supervision: We encourage the predicted
background B̂ to copy the context from the motion disoc-
clusions by background supervision:

Lbackground = ‖|B̂− Ictx|1 ∗Mctx‖1. (16)

Final loss: The final loss is a weighted sum of all the
losses:

L =λdLdepth + λrLreconstruct + λpLprior

+ λsLsmooth + λuLupsampling + λbLbackground.

In the experiments we empirically set the loss weight as fol-
lows: λr = λu = λb = 1.0, λp = 0.2, λs = 0.5, λd = 0.2
for sparse depth supervision and 1.0 for semi-dense depth
supervision. Semi-dense depth supervision should have
stronger effect since it provides more guidance.

4. Experiments
Due to space limitations, we put the experiment settings

and implementation details in the supplementary material.
In this section we first describe the metrics and methods
that we choose for evaluation in Section 4.1 and 4.2. Then
we show the quantitative and qualitative results of NVS and
depth in Section 4.3 and 4.4. Finally, we perform ablations
to show the need of several components of our pipeline in
Section 4.5.

4.1. Metrics

We evaluate our approach on the StereoBlur dataset,
which contains calibrated stereo videos as well as corre-
sponding semi-dense depth maps. For each sequence, we
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extract consecutive 20 frames for evaluation. For each
frame, we use the left view as input and generate the right
view using scale-invariant rendering [41]. We report SSIM,
PSNR and LPIPS [47] for the generated images. We ad-
ditionally report the average and median optical flow mag-
nitude between the ground truth novel view and generated
view, denoted as FMean [46] and FMid, respectively. We
evaluate the depth quality on the same frames using Stan-
dard Metrics described in iBims-1 [13].

Since temporal consistency is an important property for
video applications, we additionally formulate several met-
rics for evaluating the temporal consistency:

First, we use FEPE for evaluating the temporal consis-
tency of the novel view. It measures the agreement between
the ground truth flow and the rendered novel view flow:

FEPE = ‖Ft→t+1 − F̂t→t+1‖1, (17)

where F̂t→t+1 is the optical flow between Ît and Ît+1.
We compute the warping error of the estimated disparity

map, which measures the first order derivative of the dispar-
ity map:

DT1 = ‖|W(Ft→t+1, D̂t+1)− D̂t| ∗Nt→t+1‖1, (18)

where Nt→t+1 is the occlusion mask that mask out pixels
with bidirectional flow error larger than 1 pixel.

We also compute the second order derivative of the dis-
parity map, which is given by:

DT2 =‖|W(Ft→t+1, D̂t+1) +W(Ft→t−1, D̂t−1)

− 2D̂t|1 ∗Nt→t+1 ∗Nt→t−1‖1,
(19)

4.2. Baselines

Since there are no previous works that focus on the exact
same task, we carefully select several baselines for compar-
ison.

The first baseline is the original method of [41], referred
to as svMPI. For a fair comparison, we retrain the model
with our dataset using the losses and settings described in
the paper. The second baseline is svMPI+svreg, which
is the same as svMPI, except that we train the model us-
ing an additional temporal consistency loss described in
[9]. For svMPI+filter, we apply the same occlusion-aware
temporal filtering as in our method, except that the filter-
ing is operated on multiplane alpha at the original resolu-
tion. Furthermore, we try to use the Learned Blind Tempo-
ral Consistency (LBTC) [17] to smooth svMPI, denoted as
svMPI+lbtc, which does not require any dense correspon-
dence. We include the details of training the LBTC module
on the supplementary material. Finally, we compare to the
method that use LDI representation [35], denoted as svLDI.

To further evaluate the depth quality, we compare with
methods that predict only the depth map from a single im-
age (MiDaS [30]) or video (MC [19] and WSVD [43]).

method SSIM↑ PSNR↑ LPIPS↓ FMean↓ FMid↓ FEPE↓

svMPI 0.79 20.98 0.21 5.30 3.77 1.70
svMPI

+svreg 0.79 21.16 0.34 5.84 4.35 1.37
svMPI

+filter 0.80 21.13 0.22 5.13 3.62 1.08
svMPI

+lbtc 0.80 21.15 0.20 5.05 3.43 1.36

svLDI 0.76 19.84 0.16 5.31 3.68 2.15
Ours 0.80 21.32 0.15 4.60 3.06 1.06

Table 1: Evaluation of novel view synthesis and consis-
tency. ↑ means higher is better and ↓ lower better. We high-
light the metrics that perform best in bold. Our method out-
performs other baselines in terms of the perceptional simi-
larity and the flow magnitude. See Section 4.3

4.3. Evaluation of Novel View Synthesis

The quantitative results of NVS are shown in Table 1.
It can be seen that our methods does not have a big tran-
scendence over SSIM and PSNR, which we find due to the
phenomenon that SSIM and PSNR favor blurry results than
misaligned images (refer to the supplementary material for
an example). However, there is a clear improvement on the
perceptual similarity and the flow magnitude, which we find
are more consistent with human perception of visual qual-
ity. Applying filtering or LBTC post processing slightly
improves the NVS quality, while adding single frame reg-
ularization significantly decreases the performance. svLDI
achieves similar LPIPS as our method. However, it is not
good at producing temporally consistent results.

We demonstrate some NVS results as well as MPI vi-
sualizations on Figure 3 (more examples can be found in
supplementary material). We can see that svMPI tries to
fill the disoccluded regions using repeated textures, causing
obvious blurry artifacts, which become even more serious
when we try to apply various temporal consistency meth-
ods. We visualize the MPI by slicing through the green line
in Figure 3a along the depth (plane index) direction. We
can see that all the single view MPI based methods exibit
repeated content in the layers behind the foreground, while
ours produce an obvious two-layer structure, each with a
different texture. This significantly reduces the blurriness
in the results. svLDI shows plausible results for the novel
views, however the generated texture in the disoccluded re-
gions are not temporally consistent. Specifically, notice the
small person appearing in the background of frame It+2.
Unlike svLDI, our method successfully generates the per-
son by aggregating textures from neighbor frames.

4.4. Evaluations on Depth

We show numerical results of depth estimation in Table
2. Additionally, we plot the log10 - DT1 graph of all the
methods in Figure 5. MiDaS shows the best performance

6



648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

ICCV
#6575

ICCV
#6575

ICCV 2021 Submission #6575. CONFIDENTIAL REVIEW COPY. DO NOT DISTRIBUTE.

(a) input It (b) disocclusion mask (c) neighbor It+2 (d) svLDI

(e) svMPI (f) svMPI+svreg (g) svMPI+filter (h) svMPI+lbtc (i) Ours

(j) svMPI (k) svMPI+svreg (l) svMPI+filter (m) svMPI+lbtc (n) Ours

Figure 3: NVS results and MPI visualization of baselines and ours. Figures 2a to 2c: the input frame, disocclusion mask
in novel views and neighbor frame. Figures 2d to 2i: the novel views synthesized by corresponding methods. Figures 2j to
2n: MPI visualization. The visualization is done by slicing the MPI along the green line in Figure 3a, and the vertical axis
indicates plane index. From the results we can see that svMPI based methods generate blurry results, while svLDI fails to
generate the background that is consistent with frame It+2 (notice the background in disoccluded region).

(a) ground truth (b) svMPI (c) svMPI+svreg (d) svMPI+filter (e) svMPI+lbtc (f) Ours

Figure 4: First row: the predicted disparity maps. Second row: visualizations of temporal consistency. The vertical axis
indicates timestamps while the horizontal axis indicates the spatial location. Our method produce disparity maps with more
temporal consistency and less spatial artifacts

in terms of depth accuracy. It is trained on 10 datasets[30].
Our method achieves slightly worse accuracy but has the
best trade-off between accuracy and temporal consistency,
as shown on Figure 5.

We visualize several predicted depth maps in Figure 4.
We find that although svMPI+filter achieves best tempo-
ral consistency, it produces unpleasant artifacts along depth
boundaries due to the misalignment between depth edges
and flow edges. svreg and lbtc seem improve the tempo-
ral consistency, but both produce some spatial artifacts. In
contrast, our method achieves both sharp edges and tempo-
ral consistency, thus being the closest to the ground truth.

4.5. Ablations

We first ablate on the module that generates the param-
eter maps. We change several settings based on the full
model described in Section 3. We first test the necessity of
the flow feature by not feeding it during training and test-
ing, denoted as noflow. For noupsu, we train the pipeline
with no upsampling supervision, i.e. λu = 0. Finally, as
illustrated in Section 3.3, we remove the flow feature dur-
ing training for static scenes. We ablate this operation by
treating the static scene as a dynamic one during training.
This is denoted as nodrop.

The numerical results are presented in Table 2 and one
example is shown in Figure 6. We find that the flow feature

7



756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

ICCV
#6575

ICCV
#6575

ICCV 2021 Submission #6575. CONFIDENTIAL REVIEW COPY. DO NOT DISTRIBUTE.

Methods Rel↓ log10↓ σ1↑ σ2↑ σ3↑ DT1
↓ DT2

↓

svMPI 0.463 0.159 0.436 0.695 0.833 1.024 1.465
svMPI+svreg 0.467 0.162 0.415 0.676 0.831 0.663 0.866
svMPI+filter 0.456 0.154 0.445 0.701 0.841 0.313 0.188
svMPI+lbtc 0.467 0.157 0.435 0.700 0.845 0.453 0.496
WSVD 0.423 0.149 0.457 0.729 0.865 0.910 1.109
MC 0.580 0.175 0.397 0.673 0.827 0.726 1.006
MiDaS 0.277 0.142 0.594 0.826 0.909 0.819 1.100
Ours full 0.366 0.142 0.473 0.733 0.872 0.362 0.334
noflow 0.452 0.159 0.417 0.683 0.839 0.320 0.303
noupsu 0.409 0.146 0.460 0.736 0.873 0.402 0.388
nodrop 0.527 0.168 0.419 0.681 0.824 0.462 0.384

Table 2: Evaluation of depth accuracy and consistency. We highlight
the metrics that perform best in bold and second-best in underline.
MiDaS shows best regarding depth accuracy, while Ours demon-
strates slightly worse accuracy but far more consistency.

Figure 5: Accuracy-Consistency graph.
This graph indicates that our model
achieves best trade-off between depth accu-
racy and temporal consistency

Figure 6: Ablations of depth quality. From left to right:
input image, ground truth depth map, our full model (full),
model without flow feature (noflow), model without upsam-
pling supervision (noupsu) and model that do not drop out
flow features (nodrop). See Section 4.5

Figure 7: Ablations of background supervision. From left
to right: context image Ictx, context mask Mctx, B from
our full model, B from our model without Lbackground

(a) with Lprior (b) w/o Lprior

Figure 8: Ablations of prior loss Lprior. We visualize the
MPI along green line in the left input image. The pipeline
fails to predict two-layer structure without Lprior.

significantly helps generating accurate, sharp depth maps,
while upsampling supervision results in a small ones. In-
terestingly, if we use the flow feature in the static scene as
in nodrop, the predicted depth map, though contain sharp
edges, attempts to infer incorrect geometry from the motion

implicitly encoded in the flow feature.
Next, we explore the necessity of background supervi-

sion. As shown in Figure 7, without Lbackground, the back-
ground generation is trained in a purely unsupervised man-
ner. The generated background loses high-frequency infor-
mation. Thus background supervision is necessary for gen-
erating a finely detailed novel view.

Finally, we show the results by training with and without
Lprior in Figure 8. The pipeline fails to predict two layer
structure and exhibits similar pattern as svMPI in Figure 3j.
Specifically, the pipeline without Lprior predicts parameter
map with the thickness of the foreground close to 0, i.e., the
foreground are fully transparent.

5. Conclusions and Limitations
In this work we propose an integral framework for novel

view synthesis using only monocular video as input. In
the process, we propose a new representation, LMPI, that
greatly reducing the redundancy of MPI, and a pipeline that
effectively generates temporally consistent LMPIs. Results
show that our method achieves the best visual quality and
the best balance between depth accuracy and temporal con-
sistency compared to existing methods. The framework still
has some limitations which are left for future work, for ex-
amples, the inpainted textures of regions that are not visible
in any of the video frames, such as the background behind
a static object, do not have very high quality. This can be
solved by manually generating synthetic data and using a
more advanced loss, such as a GAN loss.
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