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Figure 1. One application of our method is to handle object motion blur. The flowers in the input images (a) are swaying with the
wind, resulting in object motion blur. The original NeRF reconstructs blurry novel views (b) due to the view inconsistency. Our method
successfully suppresses the motion blur caused by object motion and synthesizes sharp novel views (c).

DEFOCUS BLUR
\PSNRT SSIM1 LPIPS|

naive NeRF | 22.95 .6333 3742 ||naive NeRF | 22.53 .6627 .2480
MPR + NeRF| 23.38 6655 .3140 ||KPAC + NeRF| 23.04 .6917 .1847
PVD + NeRF | 23.10 .6389 .3425 ||Ours 23.47 7244 1220
Ours 25.65 .7586 .1818

CAMERA MOTION BLUR
|PSNR1 SSIM{ LPIPS|||

Table 1. Quantitative comparison on real scenes. We show the
averages on 10 scenes of each blur type. The results are provided
for reference only.

1. More Comparison Results

We first describe the details about capturing the real-
world dataset for quantitative comparison. We captured 20
scenes with 10 scenes for each blur type using a Canon EOS
RP camera. For all scenes, we set the exposure mode to
manual to prevent exposure change during capturing. To
capture the camera motion blur images, we set the shutter
speed to values between 1/3 to 1/8 depending on the bright-
ness of the scene. We manually shake the camera during
one shot to capture the camera motion blur images. To cap-
ture the reference, we keep the exposure settings the same
and let the camera stay still to capture sharp images. As for
the defocus blur, we set the aperture to the value f/4 to get

a narrow depth of field. In each view, we randomly select
an object as the focus. When capturing the reference im-
ages, we first set the aperture to its minimum value (f/22),
and then adjust the ISO and shutter speed so that the expo-
sure level indicator shows the same exposure. We finally
captured 23 ~ 45 blurry input images and 4 ~ 8 sharp
reference images for each scene.

We demonstrate more visual results of our method and
several baselines in Fig. 6 and 7. Our method shows ob-
vious improvement compared to other baselines. We also
show quantitative comparison in Tab. 1. Even though we
carefully capture the reference images, they may still suf-
fer from misalignment and exposure differences against the
ground truth, so the numeric result is provided for reference
only.

2. Handling Object Motion Blur

Our pipeline does not make any assumption on the pat-
tern of the kernel, but instead deblurs by utilizing the in-
consistency between views. Therefore, theoretically our
method can also handle other types of degradation that can
be explained using convolutional model and cause the in-
consistency between views. One application is to remove
the object motion blur in dynamic scenes, i.e., blur caused



DSK 1.966ms ‘NeRF rendering 168.8ms ‘Ray blending 0.1926ms
Table 2. Running time on V100 GPU when ray batch size = 1024.

(c) w/ learned CRF
Figure 2. Deblurring results with gamma correction and learned
CREF. Both methods achieve similar performance.

(b) w/ gamma correction

(a) Example input

by the motion of the scene objects. One example is shown in
Fig. 1, where the blurriness is caused by the flowers swaying
(note that in the source views, the background is clear and
the flower is blurry). Our method successfully reconstructs
sharp flowers. In object motion blur, where the scene is dy-
namic, the observed scene varies when the view changes,
causing the inconsistency between views. Our method re-
constructs a static “canonical NeRF” similar to the Ner-
fies [2]. Instead of deforming the “canonical NeRF” in
3D to model the dynamic scene, our proposed DSK mod-
ule warps and blends the canonical observations in image
space to synthesize the dynamic blurry images.

3. Run-time Analysis

In our pipeline, the DSK module is parameterized as a
coordinate-based MLP, and in order to get the N sparse ker-
nel points, we need to forward the MLP NN times, which
potentially presents a large computation overhead. Luck-
ily, the forward process can be done in parallel, and in the
experiments we find that using a small MLP is adequate
to model the spatially-varying kernels. Moreover, unlike
NeRF, where the MLP is queried hundreds of times to ren-
der one ray, the DSK module only requires forward N times
for each ray. As a result, the DSK only takes a small per-
centage of the processing time. During testing, since we
have already restored a sharp NeRF, the DSK is no longer
needed. We list the average running time of each compo-
nent during training in Tab. 2.

4. Modeling the CRF

We conduct an experiment on actually modeling the CRF
instead of simply using the gamma correction described in
Sec. 4.2 in the paper. Specifically, we model the CRF g(+)
using a small MLP (3 hidden layers with each layer hav-
ing 16 neurons). We initialize the MLP so that the CRF
is monotonically increasing. We show qualitative results in
Fig. 2. The results demonstrate that optimizing a CRF does
not achieve a substantial performance boost. This is possi-
bly due to the difficulty in accurately fitting CRFs in the real
world while deblurring.

(c) Ground truth
Figure 3. Deblurring results with view consistent/inconsistent
blur. Our method cannot successfully remove view consistent blur.

(a) View consistent blur  (b) View inconsistent blur
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Figure 4. Experiments on the success rate of COLMAP under
different degrees of blur with and without image deblur. The unit
of shutter time is the same as in Blender. Bigger Shutter Time
indicates larger degree of blur. The result shows that image deblur
could improve the success rate of COLMAP, but the improvement
is minor.

5. More discussions about Limitations

5.1. Consistent and Inconsistent Blur

As illustrated in the paper, our method works by exploit-
ing the inconsistency of the blur pattern between different
views. As aresult, our method may fail when handling view
consistent blur. Fig. 3 shows an example of this limitation.
We synthesize the view consistent camera motion blur by
forcing all the views to be perturbed in the same way (trans-
lation along the z-axis for a constant distance). The incon-
sistent blur is synthesized by randomly perturbing the cam-
era as in our synthetic dataset. Our method fails to produce
sharp NeRF with consistent blur, while successfully remov-
ing the blur when the motion is randomly generated.

5.2. Severe Blur

As discussed in the paper, when encounters input images
that are severely blurred, the COLMAP [3, 4] may fail to
reconstruct the camera poses. One may wonder whether the
image-space baselines would be a better option. Here we
investigate how the COLMAP is robust to the degree of blur
and whether it will benefit from the image-space baselines.
Then we experiment on the performance of our method and
the image-space baseline to see whether the latter achieves
better quality under severe blur.

Since it is difficult to control the degree of blur in real
world, we conduct the experiment on a synthetic scene. We
render the scene in Blender [ 1], where the camera motion is
fixed and we change the shutter time to model the different
degrees of blur. For each shutter time, we render multiple
blurry input images and feed these images into COLMAP
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Figure 5. Qualitative results of our method and the image-space
baseline (Image Deblur + NeRF) under different degrees of blur.
The unit of shutter time is the same as in Blender. The results show
that the image-space baseline does not achieve better visual results
in case of severe blur.

(w/o Image Deblur). We may optionally run the image de-
blur algorithm [5] on the rendered blurry images, and then
use the COLMAP to calibrate the cameras from the de-
blurred images (w/ Image Deblur). We define the Success
Rate as the proportion of the input images being success-
fully registered by the COLMAP among all input images.
We plot the Success Rate over the shutter time in Fig. 4. We
can see that deblurring the input images before running the
COLMAP helps to improve the registration robustness to
the blurriness, but the improvement is minor. And the im-
age that is successfully registered by the COLMAP already
contains a considerable amount of blur. This indicates that
our method works for most cases. When the input images
get really blurry, we may use other more powerful calibra-
tion methods.

We also evaluate whether the image-space baseline will
actually improve the deblurring under severe blur. We show
qualitative results of our method and the image-space base-
line under different degrees of blur in Fig. 5. We can see that
in all degrees of blur where the COLMAP successfully reg-
isters the input, our method outperforms the image-space
baseline. This proves that although doing image deblur
before COLMAP could improve the registration, it cannot
beat our method in terms of deblurring.

6. Supplementary Video

We provide a supplementary video with more visual
comparison results, where novel views along a camera path
are synthesized for visualization in each example. We
highly recommend readers to view our supplementary video
where our method achieves better view consistency and pro-
duces fewer artifacts than other baselines. Note that all

datasets we use contain only blurry input images. Some
input images with mild blur may look like sharp frames in
the video.
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naive NeRF MPR + NeRF PVD + NeRF Ours Reference
Figure 6. Qualitative comparison on real world camera motion blur. The last column is captured for reference only and may be misaligned
with the ground truth.



naive NeRF KPAC + NeRF Ours Reference

Figure 7. Qualitative comparison on real world defocus blur. The last column is captured for reference only and may be misaligned or have
different exposures than ground truth.
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