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03 6

=02 N 14

S0 S T 2

=% - o
1 4 64

16
Tile Size (converging to MPV)
Figure 1. Ablation on the tile size. We plot VLPIPS and
of the geometry proxy under different tile sizes.

1. Supplementary Video

We provide a supplementary video with more visual
comparisons and ablation results. We strongly recom-
mend readers to watch our supplementary video, where our
method produces results with better scene dynamism than
other baselines.

2. Real-Time Rendering

In order to render an MTV in real time, we convert the
reconstructed MTV into a textured mesh to be compatible
with the graphics rendering pipeline. We use quad geometry
for the tiles. We also pack the RGBA patches of looping and
static tiles into dynamic and static texture atlases. We pack
the tiles by iteratively arranging each patch into a regular
rectangular grid. We render the textured quads with additive
alpha blending in WebGL. Our method can render at real-
time rates on all tested platforms. It achieves 60fps in the
iPhone X.

3. Quantitative Comparison in Static Region

Apart from evaluating the quality of the whole scene, we
additionally measure the masked PSNR and SSIM in static
regions for our method and the four baselines. The static
regions are identified using the estimated loopable mask.
The results are shown in Tab. 1. Ours achieves the best per-
formance because the VBR produces blurry and ghosting
results due to the blending operation and inaccurate geome-
try estimation, and the 2D looping baselines fail to consider
view inconsistency.

| PSNR? SSIM t
Ours 26.62 0.8053
VBR 24.39 0.7657
loop2D + MTV 26.16 0.7658
loop2D + MPV 26.12 0.7722
loop2D + DyNeRF 26.54 0.7756

Table 1. PSNR and SSIM for static part.

config spatial spatial  temporal temporal
name size stride size stride
cfgl 5 2 7 1
cfg2 11 4 5 1
cfg3 17 6 3 1

Table 2. Three patch configurations used when computing metrics.

4. Ablation on Tile Size

We conduct an ablate on the tile size in Fig. 1. It shows
that our method is robust to the tile size within a certain
range. When the tile size is too small, the # Params. of the
geometry proxy increases exponentially. When the tile size
is too large, the MTV converges to the MPV representation,
which is inefficient in rendering and has poor visual quality
as shown in the experiment in the paper.

5. Implementation Details of Metrics

When computing Com., Coh. and loopQ scores, we ex-
tract 3D patches from a source video and find the nearest
neighbor 3D patches in the target video. The patches are
extracted with fixed patch size and stride in both the spa-
tial and temporal axes. We repeat the same process three
times, each time with a different patch configuration (see
Tab. 2). We use a mixture of small and large patch sizes in
both spatial and temporal dimensions to ensure diversity of
the 3D patches when computing metrics. We individually
report the value of each metric under three patch configu-
rations in Tab. 3. Our method outperforms other baselines
and ablation results under all patch configurations.



Com. Com. Com. Coh. Coh. loopQ loopQ loopQ

w/cfgl w/cfg2 wi/cfg3 | wicfgl w/icfg2 wicfg3 | w/cfgl w/cfg2 wilcfg3

Ours 10.47 10.76 10.73 8.648 9.483 9.677 8.647 9.478 9.665
loop2D + MTV 11.75 11.90 11.84 9.288 10.13 10.34 9.296 10.13 10.35
loop2D + MPV 11.80 11.88 11.785 9.200 10.02 10.24 9.218 10.04 10.26
loop2D + DyNeRF | 11.84 12.03 11.91 9.616 10.46 10.62 9.643 10.50 10.66
w/o pad 10.47 10.77 10.73 8.651 9.487 9.683 8.736 9.605 9.845
w/o 2stage 11.60 11.79 11.68 9.309 10.20 10.44 9416 10.34 10.64
w/o pyr 10.70 10.97 10.92 8.927 9.776 9.963 8.859 9.682 9.854
w/o tv 10.93 11.23 11.20 9.137 9.979 10.18 9.082 9.896 10.09

Table 3. Com., Coh. and loopQ scores of comparisons and ablations under different patch configurations. The suffix w/ ¢fg# indicates the
score with some specific patch configuration. (best in bold, and second best underlined)
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Figure 2. Failure case when synthesizing a novel view that has a
large baseline.
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Figure 3. One failure case when the scene motion is not textural.

6. More Discussion and Limitations

While our method improves the Multiplane Image (MPI)
representation by sparsifying the geometry, our method in-
herits some limitations of the MPI representation. Our
method can only synthesize novel views from a small base-
line. Fig. 2 shows a failure case where our method pro-
duces holes in the synthesized novel view. Besides, it can-
not model complex view-dependent effects, such as non-
planar specular. These limitations may possibly be resolved
by introducing neural textures into our representation as in
NeX [1], which could be an interesting future direction to
explore.

Our algorithm also makes some assumptions about the
input. Firstly, we assume scenes undergo periodic textu-
ral motions that can form a loop. It may generate noisy
results for non-loopable motions, as shown in Fig. 3. We
implicitly model the geometry as alpha values in each tile,
and the tile geometry remains fixed throughout the video.
Therefore, we cannot model large movements that result in
significant geometry changes. In addition, our method also

assumes known camera poses, which may require the scene
to contain some non-dynamic parts covered in each frame
for camera pose estimation.

7. Gallery of Results

We show a gallery of the dataset and our results in Fig. 4.
Please visit our project website for more results and real-
time demos.
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Figure 4. A Gallery of the dataset and our results.
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