
3D Video Loops from Asynchronous Input

Li Ma1 Xiaoyu Li2 Jing Liao3 Pedro V. Sander1

1The Hong Kong University of Science and Technology
2Tencent AI Lab 3City University of Hong Kong

(a) Reconstructed 3D Video Representation (b) View and Time Control (c) Real Time Demo

Figure 1. Given a set of asynchronous multi-view videos, we propose a pipeline to construct a novel 3D looping video representation
(a), which consists of a static texture atlas, a dynamic texture atlas, and multiple tiles as the geometry proxy. The 3D video loops allow
both view and time control (b), and can be rendered in real time even on mobile devices (c). We strongly recommend readers refer to the
supplementary material for video results.

Abstract

Looping videos are short video clips that can be looped
endlessly without visible seams or artifacts. They provide
a very attractive way to capture the dynamism of natu-
ral scenes. Existing methods have been mostly limited to
2D representations. In this paper, we take a step forward
and propose a practical solution that enables an immer-
sive experience on dynamic 3D looping scenes. The key
challenge is to consider the per-view looping conditions
from asynchronous input while maintaining view consis-
tency for the 3D representation. We propose a novel sparse
3D video representation, namely Multi-Tile Video (MTV),
which not only provides a view-consistent prior, but also
greatly reduces memory usage, making the optimization of
a 4D volume tractable. Then, we introduce a two-stage
pipeline to construct the 3D looping MTV from completely
asynchronous multi-view videos with no time overlap. A
novel looping loss based on video temporal retargeting al-
gorithms is adopted during the optimization to loop the 3D
scene. Experiments of our framework have shown promise
in successfully generating and rendering photorealistic 3D
looping videos in real time even on mobile devices. The
code, dataset, and live demos are available in https:
//limacv.github.io/VideoLoop3D_web/.

1. Introduction

Endless looping videos are fascinating ways to record
special moments. These video loops are compact in terms
of storage and provide a much richer experience for scenes
that exhibit looping behavior. One successful commercial
use of this technique is the live photo [19] feature in the
Apple iPhone, which tries to find an optimal looping period
and fade in/out short video clips to create looping videos.
There have been several works on automatically construct-
ing 2D looping videos from non-looping short video clips.
Liao et al. [24] first propose to create 2D video loops from
videos captured with static cameras. They solve for the
optimal starting frame and looping period for each pixel
in the input video to composite the final video. Later on,
several methods are proposed to improve the computation
speed [23], or extend to panoramas [1, 36], and gigapixel
videos [16]. However, few attempts have been made to ex-
tend video loops to a 3D representation. One existing work
that shares a similar setting as ours is VBR [46], which
generates plausible video loops in novel views. However,
it comes with some limitations: It builds on top of ULR
[5], which can produce ghosting artifacts due to inaccurate
mesh reconstruction, as shown in [30]. Besides, VBR gen-
erates looping videos and reduces the inconsistency from
asynchronous input by adaptively blending in different fre-
quency domains, which tends to blur away details.

1

https://limacv.github.io/VideoLoop3D_web/
https://limacv.github.io/VideoLoop3D_web/


To allow free-view observation of the looping videos, a
proper 3D representation needs to be employed. Recently,
tremendous progress has been made in novel view syn-
thesis based on 3D scene representations such as triangle
meshes [37, 38, 45], Multi-plane Image (MPI) [9, 56], and
Neural Radiance Field (NeRF) [7, 31, 32], which could be
reconstructed given only sparse observations of real scenes
and render photo-realistic images in novel views. Much
effort has been made to adapt these methods to dynamic
scenes, which allows for both viewing space and time con-
trols [2,6,27,28,34,35,52,57]. Therefore, a straightforward
solution to generate a 3D looping video is to employ the 2D
looping algorithms for each view and lift the results to 3D
using these methods. However, we find it hard to get satis-
factory results since the 2D looping algorithms do not con-
sider view consistency, which is even more challenging for
the asynchronous multi-view videos that we use as input.

In this work, we develop a practical solution for these
problems by using the captured video input of the dynamic
3D scene with only one commodity camera. We automat-
ically construct a 3D looping video representation from
completely asynchronous multi-view input videos with no
time overlap. To get promising 3D video loop results,
two main issues need to be addressed. First, we need to
solve for a view-consistent looping pattern from inconsis-
tent multi-view videos, from which we need to identify
spatio-temporal 3D patches that are as consistent as pos-
sible. Second, the 3D video potentially requires a memory-
intensive 4D volume for storage. Therefore, we need to
develop a 3D video representation that is both efficient in
rendering and compact in memory usage to make the opti-
mization of the 4D volume tractable.

To this end, we develop an analysis-by-synthesis ap-
proach that trains for a view-consistent 3D video represen-
tation by optimizing multi-view looping targets. We pro-
pose an efficient 3D video representation based on Multi-
plane Images (MPIs), namely Multi-tile Videos (MTVs),
by exploiting the spatial and temporal sparsity of the 3D
scene. As shown in Fig. 2, instead of densely storing large
planes, MTVs store static or dynamic texture tiles that are
sparsely scattered in the view frustum. This greatly reduces
the memory requirement for rendering compared with other
3D video representations, making the optimization of the
3D looping video feasible in a single GPU. The sparsity of
MTVs also serves as a view-consistent prior when optimiz-
ing the 3D looping video. To optimize the representation
for looping, we formulate the looping generation for each
view as a temporal video retargeting problem and develop a
novel looping loss based on this formulation. We propose a
two-stage pipeline to generate a looping MTV, and the ex-
periments show that our method can produce photorealistic
3D video loops that maintain similar dynamism from the in-
put, and enable real-time rendering even in mobile devices.

Our contributions can be summarized as follows:

• We propose Multi-tile Videos (MTVs), a novel dy-
namic 3D scene representation that is efficient in ren-
dering and compact in memory usage.

• We propose a novel looping loss by formulating the 3D
video looping construction as a temporal retargeting
problem.

• We propose a two-stage pipeline that constructs MTVs
from completely asynchronous multi-view videos.

2. Related Work
Our work lies at the confluence of two research topics:

looping video construction and novel view synthesis. We
will review each of them in this section.

Video Loops. Several works have been proposed to syn-
thesize looping videos from short video clips. Schödl et
al. [40] create video loops by finding similar video frames
and jumping between them. Audio [33] can also be lever-
aged for further refinement. Liao et al. [24] formulate the
looping as a combinatorial optimization problem that tries
to find the optimal start frame and looping period for each
pixel. It seeks to maximize spatio-temporal consistency in
the output looping videos. This formulation is further de-
veloped and accelerated by Liao et al. [23], and extended to
gigapixel looping videos [16] by stitching multiple looping
videos. Panorama video loops can also be created by taking
a video with a panning camera [1, 36]. VBR [46] generates
loops by fading in/out temporal Laplacian pyramids, and
extends video loops to 3D using ULR [5]. Another line
of work tries to create video loops from still images and
strokes provided by users as rough guidelines of the loop-
ing motion. Endless Loops [15] tries to find self-similarities
from the image and solve for the optical flow field, which is
then used to warp and composite the frames of the looping
video. This process can also be replaced by data-driven ap-
proaches [18, 29], or physics-based simulation [8]. Despite
the progress in creating various forms of looping videos,
extending looping videos to 3D is still an unexplored direc-
tion.

Novel View Synthesis of Dynamic Scenes. Novel View
Synthesis (NVS) aims at interpolating views given only a
set of sparse input views. For dynamic scenes, NVS re-
quires the construction of a 4D representation that allows
for both space and time control. Some methods use syn-
chronized multi-view videos as input, which are often only
available in a studio setting [27, 28, 57], or using specially
designed camera arrays [4, 9, 21, 25]. To ease hardware
requirements, Open4D [3] uses unconstrained multi-view
input, but still requires multiple observations at the same
timestamp. With the development of neural rendering, it
is possible to use only monocular input. However, this is

2



a highly ill-posed problem since the camera and scene ele-
ments are moving simultaneously. Some methods use extra
sensors such as a depth sensor [2,6], while some use a data-
driven prior to help construct the scene geometry [12, 50].
Others use a hand-crafted motion prior to regularize the
scene motion [22, 34, 35, 47], which usually can only han-
dle simple motions. In our setting, we take asynchronous
multi-view videos with no time overlap, which is a setting
that has not been addressed before.

3D Scene Representations. A critical issue in NVS is
the underlying scene representation. A triangle mesh is
the most commonly used scene representation in commer-
cial 3D software. Some methods use meshes as their rep-
resentation [37, 38, 46]. However, reconstructing an ac-
curate, temporally consistent mesh is still an open prob-
lem, being particularly challenging for complex in-the-wild
scenes [28]. A volumetric representation is another option
to express the 3D world by storing scene parameters in a
dense 3D grid [11, 27, 49, 54]. One benefit is that it triv-
ially supports differentiable rendering, which greatly im-
proves the reconstruction quality. The Multi-plane Image
(MPI) [9, 10, 30, 44, 48, 56] is an adapted volumetric rep-
resentation that represents a scene using multiple RGBA
planes in the camera frustum. Volume representations can
model complex geometry, but at the cost of higher memory
usage. Another rapidly developing representation is Neu-
ral Radiance Field (NeRF) [31], which models scenes as
continuous functions and parameterizes the function as an
implicit neural network. It achieves photorealistic rendering
results at the expense of long training and rendering times,
especially for dynamic scenes.

3. Method

3.1. Overview

Our goal is to reconstruct a view-consistent 3D video
representation that can be looped infinitely using com-
pletely asynchronous multi-view 2D videos. We start by
introducing a novel 3D video representation, namely Multi-
tile Videos (MTVs), which improves efficiency by exploit-
ing sparsity. Then we propose a two-stage pipeline as
shown in Fig. 3 to construct a 3D looping MTV. In the first
stage, we initialize the MTV by optimizing a static Multi-
plane Image (MPI) and a 3D loopable mask using long ex-
posure images and 2D loopable masks derived from the in-
put videos. We then construct an MTV through a tile culling
process. In the second stage, we train the MTV using an
analysis-by-synthesis approach in a coarse-to-fine manner.
The key enabler for this process is a novel looping loss
based on video retargeting algorithms, which encourages a
video to simultaneously loop and preserve similarity to the
input. The remainder of this section describes the details of
this proposed approach.

Dynamic Texture Atlas Static Texture Atlas

Multi-plane Video Multi-tile Video

Figure 2. Comparison between the Multi-plane Video representa-
tion and the Multi-tile Video representation.

3.2. Data Preparation

The input to our system are multiple asynchronous
videos of the same scene from different views. Each video
V ∈ RF×H×W×3 is a short clip with F frames and a reso-
lution of H × W . Video lengths may differ for each view.
Each video is expected to have a fixed camera pose, which
can be achieved using tripods or existing video stabilization
tools during post-process. Since we allow videos to be asyn-
chronous, we could capture each view sequentially using a
single commodity camera.

Given the precondition that the captured scene contains
mostly repetitive content, we assume the long exposure im-
ages for each view to be view-consistent. Therefore, we
compute an average image for each video V, and then regis-
ter a pinhole camera model for each video using COLMAP
[41, 42]. We also compute a binary loopable mask for each
input video similar to Liao et al. [23], where 1 indicates
pixel with the potential to form a loop and 0 otherwise.

3.3. Multi-tile Video (MTV) Representation

Before introducing our proposed MTV representation,
we first briefly review the MPI representation [56]. An MPI
represents the scene using D fronto-parallel RGBA planes
in the frustum of a reference camera, with each plane ar-
ranged at fixed depths [48]. To render an MPI from novel
views, we first need to warp each plane based on the depth
of the plane and the viewing camera, and then iteratively
blend each warped plane from back to front. A straightfor-
ward dynamic extension of MPI, namely Multi-plane Video
(MPV), is to store a sequence of RGBA maps for each
plane. For a video with T frames, this results in a 4D vol-
ume in RD×T×H×W×4, which is very memory consum-
ing. Inspired by recent work on sparse volume representa-
tion [17,26,53], we propose Multi-tile Videos, which reduce
the memory requirements by exploiting the spatio-temporal
sparsity of the scene. Specifically, we subdivide each plane
into a regular grid of tiny tiles. Each tile T ∈ RF×Hs×Ws×4

stores a small RGBA patch sequence with spatial resolution
Hs × Ws. For each tile, we assign a label l by identify-
ing whether it contains looping content lloop, a static scene
lstatic, or is simply empty lempty . We could then store a

3



Noise 3D Mask

Noise MPI Trained MPI

3D Loopable Mask

MSE 

Loss

BCE 

Loss

Noisy MTV
Multi-view Long 

Exposure Images

Multi-view Loopable 

Masks
Multi-view Videos in Multiple Pyramid Levels

…

Trained MTV

Looping 

Loss

Stage 1:  MTV Initialization Stage 2: MTV Optimization

Tile 

Culling

Figure 3. The two-stage pipeline to generate the MTV representation from multi-view videos.

single RGBA patch for lstatic, and discard tiles that are
empty. Fig. 1 visualizes a reconstructed MTV representa-
tion, where the RGBA patches are packed into static and
dynamic texture atlas. Fig. 2 shows the difference between
MPVs and MTVs.

3.4. Stage 1: MTV Initialization

We find that optimizing a dense MTV directly from
scratch results in the approach being easily trapped in local
minima, which yields view-inconsistent results. To address
this, we use a two-stage pipeline shown in Fig. 3. In the
first stage, we start by constructing a “long exposure” MPI.
Then we initialize the sparse MTV by tile culling process
that removes unnecessary tiles. By reducing the number of
parameters, the initialized MTV provides a view-consistent
prior and leads to a high-quality 3D video representation.

Training a looping-aware MPI. We start by training a
dense MPI M ∈ RD×H×W×4, as well as a 3D loopable
mask L ∈ RD×H×W , using the average image and the 2D
loopable mask, respectively. We randomly initialize M and
L, and in each iteration, we randomly sample a patch in
a random view, and render an RGB patch p̂c ∈ Rh×w×3

and a loopable mask patch p̂l ∈ Rh×w using the standard
MPI rendering method. Note that the α channel is shared
between M and L during rendering. We supervise the MPI
M by minimizing the Mean Square Error (MSE) between
the rendering results and the corresponding patch pc from
the average image. We supervise the loopable mask L by
minimizing the Binary Cross Entropy (BCE) between the
rendered 2D mask p̂l and the corresponding patch pl from
the 2D loopable mask:

Lmse =
1

hw
∥pc − p̂c∥22, (1)

Lbcd =
1

hw
∥ − (pllog(p̂l) + (1− pl)log(1− p̂l))∥1,

(2)

where ∥p∥1 and ∥p∥2 are the L1 and L2 norm of a flattened
patch p. The log is computed for every element of a patch.

Since the rendering of the MPI is differentiable, we opti-
mize M and L using the Adam optimizer [20]. Optimizing
all the parameters freely causes noisy artifacts, therefore,
we apply total variation (TV) regularization [39] to M:

Ltv =
1

HW
(∥∆xM∥1 + ∥∆yM∥1), (3)

where ∥∆xM∥1 is shorthand for the L1 norm of the gra-
dient of each pixel in the MPI M along x direction, and
analogously for ∥∆yM∥1. We also adopt a sparsity loss to
further encourage sparsity to the α channel of the MPI Mα

as in Broxton et al. [4]. Specifically, we collect D alpha val-
ues in each pixel location of Mα into a vector β, where D
is the number of planes. Then the sparsity loss is computed
as:

Lspa =
1

HW

∑
pixel

∥β∥1
∥β∥2

. (4)

The final loss in the first stage is a weighted sum of the four
losses:

L = Lmse + Lbcd + λtvLtv + λspaLspa. (5)

Tile Culling. After training, we reconstruct a static MPI
M as well as a 3D loopable mask L. We subdivide each
plane into a regular grid of tiles. In the experiments, we
subdivide the plane so that each tile has a resolution of
Hs = Ws = 16. We denote {Tc}, {Tα}, {Tl} to be the set
of RGB color, alpha value, and loopable mask of a tile, re-
spectively. We then assign label l ∈ {lempty, lstatic, lloop}
based on the {Tα} and {Tl} for each tile:

l =


lempty if max{Tα} ≤ τα,
lstatic if max{Tα} > ταand max{Tl} < τl,
lloop otherwise.

(6)
We set the threshold of culling to be τα = 0.05 and
τl = 0.5. We cull the tiles with l = lempty . For tiles with
l = lloop, we lift the static 2D RGBA patch into a patch se-
quence by copying the patch T times, where T is the num-
ber of frames that we would like the MTV to have. We add

4



w

h

∞ × T F

h

w

sij

Extract 3D Patches Compute Score

2

Compute
Qi

Kj

Figure 4. Visualization of looping loss. We first pad frames and
extract 3D patches along the time axis for each pixel location, then
we compute a normalized similarity score for each patch pair. Fi-
nally, the looping loss is computed by averaging errors between
patches with minimum scores.

a small random noise to the lifted patch video to prevent the
straightforward static solution. For tiles with l = lstatic,
we simply keep it unchanged. This culling process greatly
reduces the memory requirement for optimizing the 4D vol-
ume.

3.5. Stage 2: MTV Optimization

After initializing the MTV representation, we then seek
to optimize the final looping MTV.

Looping Loss. The main supervision of the optimization
process is a novel looping loss, which is inspired by the re-
cent progress in image [13] and video [14] retargeting algo-
rithm. Specifically, in each iteration, we randomly sample
a view and a rectangle window of size h × w, and render
the video V̂o ∈ RT×h×w×3 from MTV. We denote the cor-
responding input video as Vp ∈ RF×h×w×3. Our goal is
to optimize the MTV such that V̂o forms a looping video
V∞:

V∞(t) = V̂o(t mod T ), t ∈ [1,+∞), (7)

where V(t) means t-th frame of the video and mod is the
modulus operation. We define the looping loss to encour-
age the V∞ to be a temporal retargeting result of Vp. A
visualization of the process is shown in Fig. 4.

We start by extracting 3D patch sets {Qi; i = 1, ..., n}
and {Kj ; j = 1, ...,m} from V∞ and Vp, respectively,
along temporal axis. {Qi} and {Kj} are all centered at
the same pixel location and we repeat the same process for
every pixel. Note that although there are infinitely many
patches from the looping video, the extracted patch set of
the looping video is equivalent to a finite set of patches,
which are extracted from the rendered video by circularly
padding the first p = s−d frames of the rendered video V̂o

at the end of itself, where s and d are the size and stride of
the patches in the time axis. Fig. 5 demonstrates a toy ex-
ample with 5 frames. By optimizing both the patches inside
the video range and patches crossing the temporal boundary,
we optimize a video that is both spatio-temporally consis-
tent with the target and seamlessly looping. We then try to
minimize the bidirectional similarity (BDS) [43] between

Video frames of the rendered video

Extracted 3D patches inside the video range

…

Extracted 3D patches crossing the temporal boundary

…

Rendered Video 

Padded Video
Looping Video

Figure 5. For patches of size 3 and stride 1, the patch set extracted
from the video that endlessly repeats 5 frames is the same as the
patch set extracted from the padded video that circularly pads 2
frames.

the two sets of patches. Intuitively, this means every patch
in {Qi} appears in {Kj} (for coherence) and every patch
in {Kj} appears in {Qi} (for completeness).

To minimize the BDS between the two patch sets, we
use the Patch Nearest Neighbor (PNN) algorithm [13] that
first computes a 2D table of normalized similarity scores
(NSSs) sij for every possible pair of Qi and Kj . Then for
each patch Qi, we select a target patch Kf(i) ∈ {Kj} that
has minimal NSS, where f(i) is a selection function:

f(i) = argmin
k

si,k,where (8)

sij =
1

ρ+mink ∥Qk −Kj∥22
∥Qi −Kj∥22. (9)

Here ρ is a hyperparameter that controls the degree of com-
pleteness. Intuitively, when ρ → inf , Eq. 9 degenerates to
sij ∼ D(Qi,Kj), so we simply select Kj that is most sim-
ilar to Qi. And if ρ = 0, the denominator mink D(Qk,Kj)
penalizes the score if there are already some Qi that is clos-
est to Kj . Thus, the selection will prefer patches that have
not yet been selected.

Using the PNN algorithm, we get the set of patches
{Kf(i)} that is coherent to the target patch set {Kj}, and
the completeness is controlled by ρ. The looping loss is
then defined as the MSE loss between Qi and Kf(i):

Lloop =
1

nhw

∑
pixel

n∑
i=1

∥Qi −Kf(i)∥22, (10)

where
∑

pixel indicates that the term is summed over all the
pixel locations of the rendered video.

Pyramid Training. In the implementation, we adopt a
pyramid training scheme. In the coarse level, we downsam-
ple both the input video and the MTV. The downsampling
of the MTV is conducted by downsampling the tiles. We
start from the coarsest level with downsample factor 0.24
and train the MTV representation for 50 epochs. We then
upsample each tile by 1.4× and repeat the training step. We
show that the pyramid training scheme can improve the gen-
eration results.

5



VLPIPS↓ STDerr↓ Com.↓ Coh.↓ LoopQ↓ # Params.↓ Render Spd↑
Ours 0.1392 56.02 10.65 9.269 9.263 33M-184M 140fps
VBR 0.2074 82.36 12.98 11.42 11.49 300M 20fps
loop2D + MTV 0.2447 118.9 11.83 9.919 9.927 33M-184M 140fps
loop2D + MPV 0.2546 117.5 11.82 9.817 9.840 2123M 110fps
loop2D + DyNeRF 0.2282 123.7 11.93 10.23 10.27 2M 0.1fps

Table 1. Quantitative comparison of reconstruction quality and efficiency. ↓ (↑) indicates lower (higher) is better. Our method produces
the best quality and strikes a good balance between the number of parameters and rendering speed.

OursReference
loop2D

+MTV

loop2D

+MPV

loop2D

+DyNeRF
VBR

Figure 6. Qualitative comparison with other baselines. Our
method produces the sharpest results.

4. Experiments
4.1. Implementation Details

We captured 16 scenes for quantitative and qualitative
studies. For each scene, we captured 8-10 views in a face-
forward manner using a Sony α9 II camera. We captured
each view at 25 fps for 10-20 seconds. We downsample
each video to a resolution of 640 × 360. Finally, we ran-
domly select one view for evaluation. The others are used
for constructing MTVs using the two-stage pipeline. In the
first stage, we empirically set λtv = 0.5 and λspa = 0.004.
We construct MPI with D = 32 layers. In the second stage,
we let the hyperparameter ρ = 0 to guarantee maximum
completeness. We extract 3D patches with spatial dimen-
sion 11 and temporal dimension 3. We construct MTVs
with approximately 50 frames, i.e., 2 seconds. We set the
rendering window in each iteration to h = 180, w = 320
for both stages.

4.2. Metrics

For our quantitative study, we synthesize looping videos
in test views using the reconstructed 3D video representa-
tion and compare the synthetic results with captured target
videos. However, we do not have paired ground truth videos
since we generate 3D videos with completely asynchronous
inputs. Therefore, we adopt several intuitive metrics to eval-
uate the results in spatial and temporal aspects.
Spatial Quality. We evaluate the spatial quality of a syn-
thetic frame by computing the LPIPS value [55] between

the synthetic frame with the frame in the target video that
is most similar in terms of LPIPS. We average the values
among all the 50 synthetic frames, which we denote as
VLPIPS.
Temporal Quality. Given two videos that have similar dy-
namism, they should have similar color distribution in each
pixel location. We measure the temporal quality of the
synthetic videos by first computing the standard deviation
(STD) of the RGB color at each pixel location of the syn-
thetic video and the target video, resulting in two STD maps
of dimension H×W×3. We then compute STDerr by mea-
suring the MSE between the two maps.
Spatio-temporal Quality. We evaluate the spatio-temporal
similarity between the synthetic and target videos follow-
ing the bidirectional similarity (BDS) [43]. We individu-
ally report Completeness and Coherence scores (abbrevi-
ated as Com. and Coh., respectively) by extracting and find-
ing nearest neighbor 3D patches in two directions. Specifi-
cally, for each patch in the target video, we find the closest
patches in the synthetic video for Com. and vice-versa. We
measure the distance of two 3D patches using MSE, and the
final scores are the averages of multiple different patch con-
figurations of size and stride. We present the details of the
patch configurations in the supplementary material.

In addition, we use a metric similar to Coh. to measure
the loop quality (LoopQ), which reflects the coherence of
the looping video when switching from the last frame back
to the first frame. This is achieved by extracting the 3D
patches that overlap with the first and last frame, as shown
by the blue rectangles in Fig. 5. Other steps remain the same
as the Coh. score.

4.3. Comparisons

We first compare with VBR [46] by implementing it
based on the descriptions in the paper since the code and
data are not publicly available. We also compare with
straightforward solutions that lift classical 2D looping al-
gorithms to 3D. Specifically, we first generate a 2D loop-
ing video for each of the input videos using the method
of Liao et al. [23]. And then we construct various scene
representations using the 2D looping video and synthesize
novel views. We compare with our sparse MTV represen-
tation (loop2D + MTV), the Multi-plane Video representa-
tion (loop2D + MPV) and the dynamic NeRF representa-

6



OursReference loop2D + MTV loop2D + MPV loop2D + DyNeRF
0

180

VBR

Figure 7. We visualize the pixel-wise STDerr value for each method. Our method has a lower error, indicating that our approach best
retains the dynamism of the scene. We recommend readers watch the supplemental video, where the difference is more noticeable.

Figure 8. Results of our ablations. Our full model produces the fewest artifacts.

VLPIPS ↓ STDerr ↓ Com. ↓ Coh. ↓ LoopQ ↓
Ours 0.1392 56.02 10.65 9.269 9.263
w/o pad 0.1387 55.67 10.66 9.273 9.395
w/o 2stage 0.1755 67.99 11.69 9.982 10.13
w/o pyr 0.1412 57.41 10.86 9.555 9.465
w/o tv 0.1530 56.51 11.12 9.766 9.689
Table 2. Ablations of our method. ↓ (↑) indicates lower (higher) is
better. (best in bold, and second best underlined)

tion [21] (loop2D + DyNeRF).
We compare our method with the four baselines on

our captured dataset. We synthesize novel view videos
and report VLPIPS, STDerr, Com., Coh. and LoopQ met-
rics in Tab. 1. Our method outperforms other baselines
in terms of visual quality, scene dynamism preservation,
spatio-temporal consistency, and loop quality. We show
the qualitative comparison in Fig. 6. We also visualize the
STDerr value for each pixel in Fig. 7, which reflects the dif-
ference in dynamism between the synthetic results and the
reference. We recommend that readers also see the video re-
sults included in the supplementary material. Note that our
method produces the sharpest results, while best retaining
the dynamism of the scene. VBR directly blends inconsis-
tent videos from multiple input views. and the 2D looping
baselines fail to consider multi-view information and pro-
duce view-inconsistent looping videos. As a result, they
tend to blur out spatial and temporal details to compensate
for view inconsistencies. We observe that loop2D+DyNeRF
also generates sharper results compared with the other two
baselines. This is because DyNeRF conditions on the view
direction and tolerates the view inconsistency. However, it
performs poorly in maintaining the dynamism of the scene.

Additionally, we measure the efficiency of the scene rep-

resentations using several metrics. We first show the num-
ber of parameters (# Params.) of the model to represent a
dynamic 3D volume of 50 frames. We evaluate rendering
speed (Render Spd) at a 360 × 640 resolution on a laptop
equipped with an RTX 2060 GPU. We present the metrics in
Tab. 1. Since the MTV representation varies with different
scenes, we report the maximum and minimum values when
evaluated in our dataset. We can see that our method sur-
passes VBR in # Params. and Render Spd. Compared with
MPV that densely stores the scene parameters in a 4D vol-
ume, our sparse MTV representation can reduce the number
of parameters by up to 98%, resulting in a slightly faster
rendering speed and much smaller memory and disk usage.
On the other hand, despite the surprisingly small number
of parameters, the NeRF representation has extremely slow
rendering speed. In other words, our MTV representation
achieves the best trade-off between the number of parame-
ters and rendering efficiency.

4.4. Ablation Studies

We conducted extensive ablation studies of our method
to test the effectiveness of several design decisions in our
pipeline by individually removing each component and con-
structing 3D looping videos from our dataset. We exper-
imented on the following components: the frame padding
operation as illustrated in Fig. 5 when computing Lloop

(w/o pad), the two-stage training pipeline (w/o 2stage), the
coarse-to-fine training strategy (w/o pyr), and the TV reg-
ularization (w/o tv). The numerical results are shown in
Tab. 2, and qualitative results are presented in Fig. 8 and
Fig. 9. We also experimented with different values of λspa

and ρ to understand the resulting effect.

7



Ours w/o padReference

F

2F

3F

0

Time axis

Figure 9. Ablations for the padding operation. In the second row,
we visualize the temporal coherence by flattening the pixels in the
green line along the time axis and repeating 3 times. Red rect-
angles highlight the discontinuity produced without the padding
operation. We encourage readers to refer to the video results for a
clearer demonstration.

Padding Operation. As shown in Tab. 2, without the
padding operation, our method can still produce competi-
tive results in terms of spatial quality and spatio-temporal
consistency. It even has better temporal quality. This is be-
cause the padding operation adds extra boundary conditions
to the optimization, making the optimization more difficult.
However, as highlighted in the red rectangles in Fig. 9, with-
out padding, our method is less prone to generate a properly
looping video since it can not guarantee a smooth transition
from the last frame to the first frame, leading to a lower loop
quality score.
Two-stage Pipeline. It can be seen from Tab. 2 that the
two-stage pipeline plays an important role in generating
high-quality results. Without the two-stage pipeline, where
we directly optimize a dense MPV representation using
the looping loss, the MPV easily gets trapped into view-
inconsistent results, leading to significant drop in every met-
ric evaluated.
Coarse-to-fine Training. Results also show that the coarse-
to-fine training scheme produces slightly better spatial and
temporal quality than optimizing only on the finest level.
This is because the patch-based optimization has a wider
perceptual field at the coarse level, leading to a better global
solution. Therefore, our full model tends to produce fewer
artifacts compared with the w/o pyr model.
TV Regularization. We find it necessary to apply TV reg-
ularization, since the pipeline tends to generate MTVs with
holes without this regularization, as shown in Fig. 8, which
greatly affects the visual quality.
Weight for Lspa. We experimented on different values of
λspa on one scene. We plot the relationship between Coh.
scores and # Params. with respect to λspa. We can see
that when λspa = 0, the reconstructed MTV is less sparse,
which degenerates to a dense representation. This makes it
harder to optimize and leads to a worse Coh. score. Then #
Params. and Coh. drop rapidly as λspa grow. However, if
λspa is larger than a threshold, Coh. increases again, while
the improvement on # Params. is less substantial. This

Figure 10. The trend of Coh. score and # Params. under different
λspa. The green line is the value we use in all other experiments.

ρ = 0 ρ = 0.001 ρ = 0.1

Figure 11. Controlling the dynamism by changing ρ.

is because the excessive sparseness causes the tile-culling
process to over-cull necessary tiles, resulting in holes in the
rendering results. Therefore, we chose λspa = 0.004 (green
line in Fig. 10) in other experiments.

Value of ρ. In the experiments, we use ρ = 0 to ensure max-
imum completeness with respect to the input video. How-
ever, we find that by controlling the hyperparameter ρ, we
could control the degree of dynamism of the reconstructed
3D video. One example is shown in Fig. 11.

5. Discussion and Conclusion

Limitations and Future Work. Our method comes with
some limitations. First, since the MTV representation does
not condition on view direction, it fails to model complex
view-dependent effects, such as non-planar specular. One
possible way to improve the representation is by introducing
view-dependency, such as spherical harmonics [53] or neu-
ral basis function [51]. Another limitation is that we assume
the scene to possess a looping pattern, which works best for
natural scenes like flowing water and waving trees. How-
ever, if the scene is not loopable, our method tends to fail
because each view has a completely unique content. This
leads to a highly ill-posed problem in constructing a loop-
ing video from the asynchronous input videos.

Conclusion. In this paper, we propose a practical solution
for constructing a 3D looping video representation given
completely asynchronous multi-view videos. Experiments
verify the effectiveness of our pipeline and demonstrate sig-
nificant improvement in quality and efficiency over several
baselines. We hope that this work will further motivate re-
search into dynamic 3D scene reconstruction.

Acknowledgements. The authors from HKUST were par-
tially supported by the Hong Kong Research Grants Council
(RGC). The author from CityU was partially supported by
an ECS grant from the RGC (Project No. CityU 21209119).

8



References
[1] Aseem Agarwala, Ke Colin Zheng, Chris Pal, Maneesh

Agrawala, Michael Cohen, Brian Curless, David Salesin, and
Richard Szeliski. Panoramic video textures. ACM Trans.
Graph., 24(3):821–827, jul 2005. 1, 2

[2] Benjamin Attal, Eliot Laidlaw, Aaron Gokaslan, Changil
Kim, Christian Richardt, James Tompkin, and Matthew
O’Toole. Törf: Time-of-flight radiance fields for dynamic
scene view synthesis. Advances in neural information pro-
cessing systems, 34:26289–26301, 2021. 2, 3

[3] Aayush Bansal, Minh Vo, Yaser Sheikh, Deva Ramanan, and
Srinivasa Narasimhan. 4d visualization of dynamic events
from unconstrained multi-view videos. In Proceedings of
the IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pages 5366–5375, 2020. 2

[4] Michael Broxton, John Flynn, Ryan Overbeck, Daniel Erick-
son, Peter Hedman, Matthew Duvall, Jason Dourgarian, Jay
Busch, Matt Whalen, and Paul Debevec. Immersive light
field video with a layered mesh representation. ACM Trans-
actions on Graphics (TOG), 39(4):86–1, 2020. 2, 4

[5] Chris Buehler, Michael Bosse, Leonard McMillan, Steven
Gortler, and Michael Cohen. Unstructured lumigraph ren-
dering. In Proceedings of the 28th annual conference on
Computer graphics and interactive techniques, pages 425–
432, 2001. 1, 2

[6] Hongrui Cai, Wanquan Feng, Xuetao Feng, Yan Wang,
and Juyong Zhang. Neural surface reconstruction of dy-
namic scenes with monocular rgb-d camera. arXiv preprint
arXiv:2206.15258, 2022. 2, 3

[7] Anpei Chen, Zexiang Xu, Andreas Geiger, Jingyi Yu, and
Hao Su. Tensorf: Tensorial radiance fields. In Computer
Vision–ECCV 2022: 17th European Conference, Tel Aviv, Is-
rael, October 23–27, 2022, Proceedings, Part XXXII, pages
333–350. Springer, 2022. 2

[8] Siming Fan, Jingtan Piao, Chen Qian, Kwan-Yee Lin, and
Hongsheng Li. Simulating fluids in real-world still images.
arXiv preprint arXiv:2204.11335, 2022. 2

[9] John Flynn, Michael Broxton, Paul Debevec, Matthew Du-
Vall, Graham Fyffe, Ryan Overbeck, Noah Snavely, and
Richard Tucker. Deepview: View synthesis with learned gra-
dient descent. In Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition, pages 2367–
2376, 2019. 2, 3

[10] John Flynn, Ivan Neulander, James Philbin, and Noah
Snavely. Deepstereo: Learning to predict new views from the
world’s imagery. In Proceedings of the IEEE conference on
computer vision and pattern recognition, pages 5515–5524,
2016. 3

[11] Sara Fridovich-Keil, Alex Yu, Matthew Tancik, Qinhong
Chen, Benjamin Recht, and Angjoo Kanazawa. Plenoxels:
Radiance fields without neural networks. In Proceedings of
the IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pages 5501–5510, 2022. 3

[12] Chen Gao, Ayush Saraf, Johannes Kopf, and Jia-Bin Huang.
Dynamic view synthesis from dynamic monocular video. In
Proceedings of the IEEE/CVF International Conference on
Computer Vision, pages 5712–5721, 2021. 3

[13] Niv Granot, Ben Feinstein, Assaf Shocher, Shai Bagon, and
Michal Irani. Drop the gan: In defense of patches nearest
neighbors as single image generative models. In Proceedings
of the IEEE/CVF Conference on Computer Vision and Pat-
tern Recognition (CVPR), pages 13460–13469, June 2022.
5

[14] Niv Haim, Ben Feinstein, Niv Granot, Assaf Shocher, Shai
Bagon, Tali Dekel, and Michal Irani. Diverse genera-
tion from a single video made possible. arXiv preprint
arXiv:2109.08591, 2021. 5

[15] Tavi Halperin, Hanit Hakim, Orestis Vantzos, Gershon
Hochman, Netai Benaim, Lior Sassy, Michael Kupchik, Ofir
Bibi, and Ohad Fried. Endless loops: detecting and animat-
ing periodic patterns in still images. ACM Transactions on
Graphics (TOG), 40(4):1–12, 2021. 2

[16] Mingming He, Jing Liao, Pedro V Sander, and Hugues
Hoppe. Gigapixel panorama video loops. ACM Transactions
on Graphics (TOG), 37(1):1–15, 2017. 1, 2

[17] Peter Hedman, Pratul P Srinivasan, Ben Mildenhall,
Jonathan T Barron, and Paul Debevec. Baking neural ra-
diance fields for real-time view synthesis. In Proceedings
of the IEEE/CVF International Conference on Computer Vi-
sion, pages 5875–5884, 2021. 3

[18] Aleksander Holynski, Brian L Curless, Steven M Seitz, and
Richard Szeliski. Animating pictures with eulerian mo-
tion fields. In Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition, pages 5810–
5819, 2021. 2

[19] Apple Inc. Take and edit live photos, Oct 2021. 1
[20] Diederik P. Kingma and Jimmy Ba. Adam: A method for

stochastic optimization. In Yoshua Bengio and Yann LeCun,
editors, 3rd International Conference on Learning Represen-
tations, ICLR 2015, San Diego, CA, USA, May 7-9, 2015,
Conference Track Proceedings, 2015. 4

[21] Tianye Li, Mira Slavcheva, Michael Zollhoefer, Simon
Green, Christoph Lassner, Changil Kim, Tanner Schmidt,
Steven Lovegrove, Michael Goesele, Richard Newcombe,
et al. Neural 3d video synthesis from multi-view video. In
Proceedings of the IEEE/CVF Conference on Computer Vi-
sion and Pattern Recognition, pages 5521–5531, 2022. 2,
7

[22] Zhengqi Li, Simon Niklaus, Noah Snavely, and Oliver Wang.
Neural scene flow fields for space-time view synthesis of dy-
namic scenes. In Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition, pages 6498–
6508, 2021. 3

[23] Jing Liao, Mark Finch, and Hugues Hoppe. Fast computation
of seamless video loops. ACM Transactions on Graphics
(TOG), 34(6):1–10, 2015. 1, 2, 3, 6

[24] Zicheng Liao, Neel Joshi, and Hugues Hoppe. Automated
video looping with progressive dynamism. ACM Transac-
tions on Graphics (TOG), 32(4):1–10, 2013. 1, 2

[25] Kai-En Lin, Lei Xiao, Feng Liu, Guowei Yang, and Ravi Ra-
mamoorthi. Deep 3d mask volume for view synthesis of dy-
namic scenes. In Proceedings of the IEEE/CVF International
Conference on Computer Vision, pages 1749–1758, 2021. 2

[26] Lingjie Liu, Jiatao Gu, Kyaw Zaw Lin, Tat-Seng Chua, and
Christian Theobalt. Neural sparse voxel fields. Advances

9



in Neural Information Processing Systems, 33:15651–15663,
2020. 3

[27] Stephen Lombardi, Tomas Simon, Jason Saragih, Gabriel
Schwartz, Andreas Lehrmann, and Yaser Sheikh. Neural vol-
umes: Learning dynamic renderable volumes from images.
arXiv preprint arXiv:1906.07751, 2019. 2, 3

[28] Stephen Lombardi, Tomas Simon, Gabriel Schwartz,
Michael Zollhoefer, Yaser Sheikh, and Jason Saragih. Mix-
ture of volumetric primitives for efficient neural rendering.
ACM Transactions on Graphics (TOG), 40(4):1–13, 2021.
2, 3

[29] Aniruddha Mahapatra and Kuldeep Kulkarni. Controllable
animation of fluid elements in still images. In Proceedings of
the IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pages 3667–3676, 2022. 2

[30] Ben Mildenhall, Pratul P Srinivasan, Rodrigo Ortiz-Cayon,
Nima Khademi Kalantari, Ravi Ramamoorthi, Ren Ng, and
Abhishek Kar. Local light field fusion: Practical view syn-
thesis with prescriptive sampling guidelines. ACM Transac-
tions on Graphics (TOG), 38(4):1–14, 2019. 1, 3

[31] Ben Mildenhall, Pratul P Srinivasan, Matthew Tancik,
Jonathan T Barron, Ravi Ramamoorthi, and Ren Ng. Nerf:
Representing scenes as neural radiance fields for view syn-
thesis. Communications of the ACM, 65(1):99–106, 2021. 2,
3

[32] Thomas Müller, Alex Evans, Christoph Schied, and Alexan-
der Keller. Instant neural graphics primitives with a multires-
olution hash encoding. ACM Trans. Graph., 41(4):102:1–
102:15, July 2022. 2

[33] Medhini Narasimhan, Shiry Ginosar, Andrew Owens,
Alexei A. Efros, and Trevor Darrell. Strumming to the beat:
Audio-conditioned contrastive video textures. In Proceed-
ings of the IEEE/CVF Winter Conference on Applications of
Computer Vision (WACV), pages 3761–3770, January 2022.
2

[34] Keunhong Park, Utkarsh Sinha, Jonathan T Barron, Sofien
Bouaziz, Dan B Goldman, Steven M Seitz, and Ricardo
Martin-Brualla. Nerfies: Deformable neural radiance fields.
In Proceedings of the IEEE/CVF International Conference
on Computer Vision, pages 5865–5874, 2021. 2, 3

[35] Keunhong Park, Utkarsh Sinha, Peter Hedman, Jonathan T
Barron, Sofien Bouaziz, Dan B Goldman, Ricardo Martin-
Brualla, and Steven M Seitz. Hypernerf: A higher-
dimensional representation for topologically varying neural
radiance fields. arXiv preprint arXiv:2106.13228, 2021. 2, 3

[36] Alex Rav-Acha, Yael Pritch, Dani Lischinski, and Shmuel
Peleg. Dynamosaics: Video mosaics with non-chronological
time. In 2005 IEEE Computer Society Conference on Com-
puter Vision and Pattern Recognition (CVPR’05), volume 1,
pages 58–65. IEEE, 2005. 1, 2

[37] Gernot Riegler and Vladlen Koltun. Free view synthesis. In
European Conference on Computer Vision, 2020. 2, 3

[38] Gernot Riegler and Vladlen Koltun. Stable view synthesis.
In Proceedings of the IEEE Conference on Computer Vision
and Pattern Recognition, 2021. 2, 3

[39] Leonid I Rudin and Stanley Osher. Total variation based im-
age restoration with free local constraints. In Proceedings of

1st international conference on image processing, volume 1,
pages 31–35. IEEE, 1994. 4

[40] Arno Schödl, Richard Szeliski, David H Salesin, and Irfan
Essa. Video textures. In Proceedings of the 27th annual con-
ference on Computer graphics and interactive techniques,
pages 489–498, 2000. 2

[41] Johannes Lutz Schönberger and Jan-Michael Frahm.
Structure-from-motion revisited. In Conference on Com-
puter Vision and Pattern Recognition (CVPR), 2016. 3

[42] Johannes Lutz Schönberger, Enliang Zheng, Marc Pollefeys,
and Jan-Michael Frahm. Pixelwise view selection for un-
structured multi-view stereo. In European Conference on
Computer Vision (ECCV), 2016. 3

[43] Denis Simakov, Yaron Caspi, Eli Shechtman, and Michal
Irani. Summarizing visual data using bidirectional similar-
ity. In 2008 IEEE Conference on Computer Vision and Pat-
tern Recognition, pages 1–8. IEEE, 2008. 5, 6

[44] Pratul P Srinivasan, Richard Tucker, Jonathan T Barron,
Ravi Ramamoorthi, Ren Ng, and Noah Snavely. Pushing the
boundaries of view extrapolation with multiplane images. In
Proceedings of the IEEE/CVF Conference on Computer Vi-
sion and Pattern Recognition, pages 175–184, 2019. 3

[45] Justus Thies, Michael Zollhöfer, and Matthias Nießner. De-
ferred neural rendering: Image synthesis using neural tex-
tures. ACM Transactions on Graphics (TOG), 38(4):1–12,
2019. 2

[46] Théo Thonat, Yagiz Aksoy, Miika Aittala, Sylvain Paris,
Frédo Durand, and George Drettakis. Video-based rendering
of dynamic stationary environments from unsynchronized
inputs. In Computer Graphics Forum, volume 40, pages 73–
86. Wiley Online Library, 2021. 1, 2, 3, 6

[47] Edgar Tretschk, Ayush Tewari, Vladislav Golyanik, Michael
Zollhöfer, Christoph Lassner, and Christian Theobalt. Non-
rigid neural radiance fields: Reconstruction and novel view
synthesis of a dynamic scene from monocular video. In
Proceedings of the IEEE/CVF International Conference on
Computer Vision, pages 12959–12970, 2021. 3

[48] Richard Tucker and Noah Snavely. Single-view view synthe-
sis with multiplane images. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition,
pages 551–560, 2020. 3

[49] Liao Wang, Jiakai Zhang, Xinhang Liu, Fuqiang Zhao, Yan-
shun Zhang, Yingliang Zhang, Minye Wu, Jingyi Yu, and
Lan Xu. Fourier plenoctrees for dynamic radiance field ren-
dering in real-time. In Proceedings of the IEEE/CVF Con-
ference on Computer Vision and Pattern Recognition, pages
13524–13534, 2022. 3

[50] Qianqian Wang, Zhengqi Li, David Salesin, Noah Snavely,
Brian Curless, and Janne Kontkanen. 3d moments from near-
duplicate photos. In Proceedings of the IEEE/CVF Con-
ference on Computer Vision and Pattern Recognition, pages
3906–3915, 2022. 3

[51] Suttisak Wizadwongsa, Pakkapon Phongthawee, Jiraphon
Yenphraphai, and Supasorn Suwajanakorn. Nex: Real-time
view synthesis with neural basis expansion. In Proceedings
of the IEEE/CVF Conference on Computer Vision and Pat-
tern Recognition, pages 8534–8543, 2021. 8

10



[52] Jae Shin Yoon, Kihwan Kim, Orazio Gallo, Hyun Soo Park,
and Jan Kautz. Novel view synthesis of dynamic scenes with
globally coherent depths from a monocular camera. In Pro-
ceedings of the IEEE/CVF Conference on Computer Vision
and Pattern Recognition, pages 5336–5345, 2020. 2

[53] Alex Yu, Ruilong Li, Matthew Tancik, Hao Li, Ren Ng,
and Angjoo Kanazawa. Plenoctrees for real-time rendering
of neural radiance fields. In Proceedings of the IEEE/CVF
International Conference on Computer Vision, pages 5752–
5761, 2021. 3, 8

[54] Jiakai Zhang, Liao Wang, Xinhang Liu, Fuqiang Zhao,
Minzhang Li, Haizhao Dai, Boyuan Zhang, Wei Yang, Lan
Xu, and Jingyi Yu. Neuvv: Neural volumetric videos
with immersive rendering and editing. arXiv preprint
arXiv:2202.06088, 2022. 3

[55] Richard Zhang, Phillip Isola, Alexei A Efros, Eli Shechtman,
and Oliver Wang. The unreasonable effectiveness of deep
features as a perceptual metric. In CVPR, 2018. 6

[56] Tinghui Zhou, Richard Tucker, John Flynn, Graham Fyffe,
and Noah Snavely. Stereo magnification: Learning view syn-
thesis using multiplane images, 2018. 2, 3

[57] C Lawrence Zitnick, Sing Bing Kang, Matthew Uyttendaele,
Simon Winder, and Richard Szeliski. High-quality video
view interpolation using a layered representation. ACM
transactions on graphics (TOG), 23(3):600–608, 2004. 2

11


	. Introduction
	. Related Work
	. Method
	. Overview
	. Data Preparation
	. Multi-tile Video (MTV) Representation
	. Stage 1: MTV Initialization
	. Stage 2: MTV Optimization

	. Experiments
	. Implementation Details
	. Metrics
	. Comparisons
	. Ablation Studies

	. Discussion and Conclusion

